
Formal Speci�cation and Veri�cation of a Fault-Masking

and Transient-Recovery Model for Digital Flight-Control

Systems
1

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA 94025

June 19, 1991

1This research was supported by NASA Langley Research Center under contract NAS1

18969

Abstract

We present a formal model for fault-masking and transient-recovery

among the replicated computers of digital
ight-control systems. We

establish conditions under which majority voting causes the same com-

mands to be sent to the actuators as those that would be sent by a single

computer that su�ers no failures. The model and its analysis have been

subjected to formal speci�cation and mechanically checked veri�cation

using the Ehdm system.

Keywords: digital
ight control systems, formal methods, formal

speci�cation and veri�cation, proof checking, fault tolerance, transient

faults, majority voting, modular redundancy

Contents

1 Introduction 1

1.1 Digital Flight-Control Systems : 2

1.2 Fault Tolerance for DFCS : 3

1.3 Formal Models for DFCS : 11

1.3.1 Overview of the Fault-Masking Model Employed : : : : : : : 12

2 The Fault-Masking Model 17

2.1 A Model for Fault-Free Process Control : : : : : : : : : : : : : : : : 17

2.2 The N-plex Model : 21

2.3 Fault Tolerance and Transient-Recovery : : : : : : : : : : : : : : : : 24

3 Speci�cation and Veri�cation in EHDM 31

4 Reconciliation with the LaRC Model 37

4.1 Speci�c Voting Patterns : 41

4.1.1 Continuous Voting : 42

4.1.2 Cyclic Voting : 43

4.1.3 Optimal Voting : 43

5 Discussion and Conclusions 47

Bibliography 53

A LATEX-printed Speci�cation Listings 59

simple machine : 59

simple machine tcc : 61

simple machine tcc proofs : 62

noetherian : 62

natinduction : 63

natinduction tcc : 64

simple props : 64

i

ii Contents

simple props tcc : 65

sets : 66

cardinality : 66

orderedsets : 67

repl machine : 68

repl machine tcc : 69

repl machine tcc proofs : 69

supports : 70

supports tcc : 71

supports tcc proofs : 72

correctness : 72

correctness tcc : 73

correctness tcc proofs : 73

connect : 74

sensor step : 76

sensor step tcc : 77

nonvoted step : 78

nonvoted step tcc : 79

voted step : 80

voted step tcc : 82

voted step tcc proofs : 83

correctness proof : 83

outputs : 84

B Cross-Reference Listing 85

C Results of Proof-Chain Analysis 90

Chapter 1

Introduction

This report is concerned with the development and the formal speci�cation and ver-

i�cation of a fault-masking and transient-recovery model appropriate to the repli-

cated computers in digital
ight-control systems (DFCS). The culmination of the

veri�cation is a mechanically checked theorem which establishes, subject to certain

carefully stated assumptions, that faults among the component computers of the

DFCS will be masked|so that the commands sent to the actuators will be the

same as those that would be sent by a single computer that su�ers no failures.

In order to make this report accessible to those unfamiliar with fault-tolerant

process-control systems, we begin this chapter with a brief exposition of DFCS, and

then present the rationale for the particular model that is the focus of our formal

investigation. (See [59] for a full treatment of digital avionics systems, [20] for a

treatment of general validation issues, and [49] for a description of current practice

in the veri�cation and validation of software for DFCS.)

The second chapter presents the model formally, in the manner of a conventional

mathematical development. The proof of the fault-masking and transient-recovery

theorem is presented in the same way.

The third chapter outlines the fully formal speci�cation of the model, and its

mechanically checked veri�cation. These were undertaken using the Ehdm formal

speci�cation and veri�cation system [9{11,54,63]; the Ehdm speci�cation text and

related material are given in the Appendices.

The fourth chapter discusses the relationship between the model employed here

and the similar one developed by Di Vito, Butler, and Caldwell of NASA Langley

Research Center [15, 16]. The �fth and �nal chapter presents our conclusions and

recommendations for further work.

1

2 Chapter 1. Introduction

1.1 Digital Flight-Control Systems

Increasingly, modern aircraft rely on Digital Flight-Control Systems|computer sys-

tems that interpret the pilot's control inputs and send appropriate commands to the

control surfaces and engines.1 Depending on the aircraft design, DFCS may manage

all, or merely some, of the control surfaces and may or may not have back-up sys-

tems comprising either analog computers or conventional mechanical and hydraulic

systems. The advantages claimed for DFCS include the following:

Safety: DFCS can prevent the pilot stalling the plane, or otherwise taking it be-

yond its control envelope. For example, the F16 provides yaw-rate limitation

to prevent the aircraft entering a certain
at spin mode that has \unaccept-

able recovery," and rudder fade-out to ensure that \pilots could not get in

trouble because of
ying habits developed in other aircraft" [18]. Similarly,

the Airbus A320 DFCS provides \stall/windshear protection and protection

also against overspeed and overstress : : : the A320's system automatically pre-

vents the aircraft leaving its safe-
ight envelope at any point, whether pilot

error or incompetence, engine malfunction, or the elements have brought it

to that point" [36] (but see also [2]). Other contributions to safety may in-

clude reduction in pilot workload through increased automation and improved

handling.

Economy and performance: Elimination of heavy hydraulic and mechanical

control linkages reduces aircraft weight and thereby improves fuel-e�ciency

and load-carrying capacity [48]. Optimum control of engine thrust and angle

of attack can also reduce fuel consumption signi�cantly.

E�ciency and performance can sometimes be gained at the expense of han-

dling qualities. DFCS can restore neutral handling characteristics to such

aircraft. Maneuverability in unusual
ight regimes (e.g., post-stall) may re-

quire complex transformations between command inputs and actuator outputs

that can only be achieved by computer control. For example, roll commands

in the X31 at high angles of attack are interpreted relative to the velocity

vector, not the longitudinal axis of the aircraft. Thus at 90� angle of attack,

a pure roll command translates to a pure yaw in the body axis [17]. In the

limit, high maneuverability, stealth, or other requirements for military aircraft

may best be achieved with an unstable airplane|which will require computer

control in order to
y at all.

1The popular term
y-by-wire (FBW) covers both DFCS and similar, earlier, systems that
employ analog computers. Fly-by-light is simply FBW in which �ber-optic cables replace the

copper wires used to route signals around the aircraft. The term
y-by-oil is sometimes used for

systems based on hydraulic actuators [26].

1.2. Fault Tolerance for DFCS 3

Damage control: The loss of a control surface or engine sometimes results in a

crash, not because the airplane is absolutely uncontrollable, but because its

pilot is unable to learn how to control it in the time available. For example,

it is very hard to control a twin-engined light plane if one of the engines fails,

and private pilots often crash in this circumstance. A DFCS can partially

compensate for the massive change in
ying characteristics caused by failure

or damage and thereby assist the pilot to make a safe landing. Experiments

and simulations have been performed to investigate the e�cacy of such systems

for military aircraft su�ering battle damage [42,45].

The perceived advantages of DFCS are such that they are employed in almost

all modern high-performance western military aircraft. Modern western passenger

aircraft generally have full-authority digital engine controls (FADEC); digital au-

topilot, autolander, and
ight management system; and digital control of secondary

surfaces and functions, such as air brakes, spoilers, yaw damping, and gust allevia-

tion. However, the Airbus A320 is the only passenger aircraft in service with a full

DFCS|that is, one controlling primary control surfaces in the pitch and roll axes.2

Forthcoming passenger aircraft such as the Boeing 777 will also employ comprehen-

sive DFCS.

The greater the bene�t provided by DFCS, the less plausible it becomes to

provide adequate back-up systems employing di�erent technologies. For example,

the DFCS of an experimental version of the F16 �ghter (the \Advanced Fighter

Technology Integration" or AFTI-F16) provides control in
ight regimes beyond

the capability of the simpler analog back-up system. Extending the capability of

the back-up system to the full
ight envelope of the DFCS would add considerably

to its complexity|and it is the very simplicity of that analog system that is its

chief source of credibility as a back-up system [25]. Similarly, direct manual control

of
ight surfaces is unlikely to be available if elimination of heavy mechanical and

hydraulic systems was a primary reason for installing DFCS in the �rst place. Thus,

the Airbus A320 has mechanical links to only the rudder and the elevator trim-

tab [48, 62] and is given no certi�cation credit for these back-up systems by the

FAA.

1.2 Fault Tolerance for DFCS

It is clear that extreme reliability must be required of DFCS. A much-quoted �gure

is a requirement for passenger aircraft that the probability of catastrophic failure

during a 10 hour
ight should be less than 10�9 per hour [19]. Such reliabilities

are beyond those that can be guaranteed for individual digital devices. Not only

2The Concorde, which received FAA certi�cation in 1969, has analog FBW with mechanical

backup in all three primary axes.

4 Chapter 1. Introduction

must occasional latent manufacturing defects and the e�ects of aging be considered,

but also environmental hazards such as power-supply surges, lightning strikes, and

cosmic rays (which can cause single-event-upsets, or SEUs). These factors conspire

to yield an overall reliability well below that required. It follows that some form of

fault tolerance based on replication and redundancy is needed in order to achieve

an underlying \hardware platform" of the required reliability. There are many

con�gurations for redundant and replicated computer systems, and careful reliability

analysis is required to evaluate the reliability provided by a given con�guration and

level of redundancy [7]. Such analyses show that suitably constructed N-modularly

redundant systems (which we will call N-plexes for brevity) can achieve the desired

reliability.

Within an N-plex, all calculations are performed by N identical computer sys-

tems and the results are submitted to some form of averaging or voting. Great care

must be taken to eliminate single-point failures, so the separate computer systems

(or \channels," as they are often called in fault-tolerant systems) will generally use

di�erent power supplies and be otherwise electrically and physically isolated as far

as possible. Notice, however, that there is no protection against design faults: any

such faults in either the hardware or the software will be common to all members

of the N-plex and all will fail together. In this report, we do not address the is-

sue of design faults in the hardware, nor in the application software that it runs.

We are, however, very much concerned with the possibility of design faults in the

redundancy-management software that harnesses the failure-prone individual com-

ponents together as a fault-tolerant N-plex. There is evidence (see page 8) that

redundancy management is su�ciently complex and di�cult that it can become the

primary source of unreliability in a DFCS.

The function performed by a DFCS is basically one of process control, as por-

trayed in Figure 1.1. The goal is to control the airplane in
ight under command

of the pilot. Information about the state of the airplane, which is subject to exter-

nal disturbances, is obtained through sensors, and control is exercised by sending

commands to actuators. The basic structure of most process-control software is

very similar: the software performs a repetitive cycle of sampling sensors and con-

trol inputs, using control laws to calculate the required actuator response and then

sending appropriate commands to the actuators. The complete cycle is generally

broken into individual \frames," each attending to a particular dimension of con-

trol: for example, one frame may deal with pitch-control|sampling the appropriate

sensors, computing the necessary corrections, and sending commands to the eleva-

tors; another frame may deal with roll, still another with navigation, and so on.

Some variables may need more rapid control than others, so that a complete cycle

might contain four pitch-control frames, two roll frames, and only a single naviga-

tion frame. This general pattern of activity is described as a multi-rate periodic

schedule.

1.2. Fault Tolerance for DFCS 5

Disturbances

Pilot Commands

DFCS

Sensors

Airplane

Actuators

Figure 1.1: The DFCS Process-Control Loop

Each frame will perform several computational activities: sampling sensors, eval-

uating control laws, generating control outputs, performing self-tests, and so on.

\Tasks" are the primitive computational elements within this structure: they are

the individual units of activity that may be scheduled and executed. The schedul-

ing slots within a frame and to which individual tasks may be allocated are called

\subframes." Thus, for example, the subframes within a pitch-control frame may

be allocated to several sensor-sampling tasks, an averaging task to integrate the

readings of redundant sensors, a control law task, and an actuator-output task.

Many re�nements are possible within this basic paradigm. For example, there

may be a �xed, static, schedule of frames, so that all cycles are identical; alterna-

tively, frames may be scheduled dynamically, depending on external circumstances.

6 Chapter 1. Introduction

Similarly, frames may all execute for a common �xed duration, or may have di�erent

durations; they may always execute to completion, or may be subject to preemption,

and so on. Whether task scheduling for critical real-time systems should be static or

dynamic is a controversial issue. Proponents of static schedules point to Richards'

anomalies [40,52], in which the early completion of one task can cause another to be

late, and other di�culties in dynamic scheduling as indications that the predictabil-

ity required for hard real-time systems is best achieved by static scheduling.

The major challenge in the design of a fault-tolerant N-plex for DFCS is one of

redundancy management. Instead of a single computer executing the DFCS soft-

ware, there will be several, which must coordinate and vote (or average) actuator

commands,3 and tolerate faults among their own members. In addition to the repli-

cated computers, sensors and actuators will be replicated also. The management

of all this redundancy and replication adds considerable complexity to both the

operating system (generally called an \executive" in process-control systems) and

the application tasks: it is not unusual for 70% of all application software code to

be concerned with redundancy management and fault tolerance.4 Complexity is a

source of design faults, and there is a distinct possibility that such a large quantity

of additional code may lessen, rather than enhance, overall reliability. The goal

of the research program, of which this work is a component, is to develop princi-

pled, structured, and formally speci�ed and veri�ed approaches to the design and

implementation of redundancy management in DFCS [15].

A plausibly simple approach to redundancy management in an N-plex is the

\asynchronous" design, in which the channels run fairly independently of each other:

each computer samples sensors independently, evaluates the control laws indepen-

dently, and sends its actuator commands to an averaging or selection component

that chooses the value to send to the actuator concerned. The triplex-redundant

DFCS of the experimental AFTI-F16 was built this way, and its
ight tests reveal

some of the shortcomings of the approach [25,38].

First, because the unsynchronized individual computers may sample sensors at

slightly di�erent times, they can obtain readings that di�er quite appreciably from

one another. The gain in the control laws can amplify these input di�erences to

provide even larger di�erences in the results submitted to the output selection al-

gorithm. During ground quali�cation of the AFTI-F16, it was found that these

di�erences sometimes resulted in a channel being declared failed when no real fail-

3Voting or averaging is often performed directly by the actuators, through some form of \force-

summing." For example, di�erent channels may energize separate coils of a single solenoid, or

multiple hydraulic pistons may be linked to a single shaft [18, Figure 3.2{2].
4There is a degree of design freedom in how much of the redundancy management should be

performed by the executive, and how much by the application tasks. The 70% �gure refers to

designs with little support for redundancy management in the executive.

1.2. Fault Tolerance for DFCS 7

ure had occurred [37, p. 478].5 Accordingly, rather a wide spread of values must

be accepted by the threshold algorithms that determine whether sensor inputs and

actuator outputs are to be considered \good." For example, the output thresholds

of the AFTI-F16 were set at 15% plus the rate of change of the variable concerned;

also the gains in the control laws were reduced. This increases the latency for de-

tection of faulty sensors and channels, and also allows a failing sensor to drag the

value of any averaging functions quite a long way before it is excluded by the input

selection threshold; at that point, the average will change with a thump [38, Figure

20] that could have adverse e�ects on the handling of the aircraft.

The danger of wide sensor selection thresholds is dramatically illustrated by a

problem discovered in the X29A. This aircraft has three sources of air data: a nose

probe and two side probes. The selection algorithm used the data from the nose

probe provided it was within some threshold of the data from both side probes.

The threshold was large to accommodate position errors in certain
ight modes.

It was subsequently discovered that if the nose probe failed to zero at low speed,

it would still be within the threshold of correct readings, causing the aircraft to

become unstable and \depart." This error was found in simulation, but 162
ights

had been at risk before it was detected [39].

An even more serious shortcoming of asynchronous systems arises when the

control laws contain decision points. Here, sensor noise and sampling skew may

cause independent channels to take di�erent paths at the decision points and to

produce widely divergent outputs. This occurred on Flight 44 of the AFTI-F16

ight tests [38, p. 44]. Each channel declared the others failed; the analog back-

up was not selected because the simultaneous failure of two channels had not been

anticipated and the aircraft was
own home on a single digital channel. Notice that

all protective redundancy had been lost, and the aircraft was
own home in a mode

for which it had not been designed|yet no hardware failure had occurred.

Another illustration is provided by a 3-second \departure" on Flight 36 of the

AFTI-F16
ight tests, during which sideslip exceeded 20�, normal acceleration ex-

ceeded �rst �4g, then +7g, angle of attack went to �10�, then +20�, the aircraft

rolled 360�, the vertical tail exceeded design load, all control surfaces were oper-

ating at rate limits, and failure indications were received from the hydraulics and

canard actuators. The problem was traced to an error in the control laws, but sub-

sequent analysis showed that the side air data probe was blanked by the canard at

the high angle of attack and sideslip achieved during the excursion; the wide input

threshold passed the incorrect value through and di�erent channels took di�erent

paths through the control laws. Analysis showed this would have caused complete

failure of the DFCS and reversion to analog backup for several areas of the
ight

envelope [38, pp. 41{42].

5Also, in the
ight tests of the X31 the control system \went into a reversionary mode four times

in the �rst nine
ights, usually due to disagreement between the two air data sources" [17].

8 Chapter 1. Introduction

Several other di�culties and failure indications on the AFTI-F16 were traced to

the same source: asynchronous operation allowing di�erent channels to take di�erent

paths at certain selection points. The repair was to introduce voting at some of these

\software switches." In one particular case, repeated channel failure indications in

ight were traced to a roll-axis \software switch." It was decided to vote the switch

(which, of course, required ad hoc synchronization) and extensive simulation and

testing were performed on the changes necessary to achieve this. On the next
ight,

the problem was found still to be there. Analysis showed that although the switch

value was voted, it was the unvoted value that was used [38, p. 38].

The AFTI-F16
ight tests revealed numerous other problems of a similar nature.

Summarizing, Mackall [38, pp. 40{41] writes:

\The criticality and number of anomalies discovered in
ight and

ground tests owing to design oversights are more signi�cant than those

anomalies caused by actual hardware failures or software errors.

\: : :quali�cation of such a complex system as this, to some given level

of reliability, is di�cult : : : [because] the number of test conditions be-

comes so large that conventional testing methods would require a decade

for completion. The fault-tolerant design can also a�ect overall sys-

tem reliability by being made too complex and by adding characteristics

which are random in nature, creating an untestable design.

\As the operational requirements of avionics systems increase, com-

plexity increases. Reducing complexity appears to be more of an art

than a science and requires an experience base not yet available. If the

complexity is required, a method to make system designs more under-

standable, more visible, is needed.

\The asynchronous design of the [AFTI-F16] DFCS introduced a ran-

dom, unpredictable characteristic into the system. The system became

untestable in that testing for each of the possible time relationships be-

tween the computers was impossible. This random time relationship

was a major contributor to the
ight test anomalies. Adversely a�ecting

testability and having only postulated bene�ts,6 asynchronous operation

of the DFCS demonstrated the need to avoid random, unpredictable, and

uncompensated design characteristics."

It is di�culties such as these that have caused those performing research in

fault-tolerant systems for DFCS to prefer synchronized channels and exact-match

voting [22,27,30,64]. Of course, the synchronization must itself be fault-tolerant and

6The decision to use an asynchronous design for the AFTI-F16 DFCS was because \the contrac-
tor [Bendix under subcontract to General Dynamics] believed synchronization would introduce a

single-point failure caused by electromagnetic interference (EMI) and lightning e�ects" [38, p. 7]|

which may well have been correct given the technology of the early 1980s.

1.2. Fault Tolerance for DFCS 9

no such algorithms were known until about 1982.7 A number of provably correct

Byzantine fault-tolerant clock synchronization algorithms are now available [6, 29,

34, 50, 56, 60], and some have been formally veri�ed [53, 58]. An algorithm due

to In�s and Moore [23] is attractively simple, and tolerates a very wide class of

faults that is, however, short of the fully Byzantine. Probabilistic algorithms due to

Cristian [12] can achieve very close synchronization, but also fall short of Byzantine

fault tolerance.

For exact-match voting, each channel must operate on the same data. Thus the

computers cannot simply use their own private sensor readings, but must exchange

sampled values with each other in a Byzantine fault-tolerant manner. By this means,

every (working) computer begins each frame with the same set of sensor readings

as the others.8 Each computer will then run the same sensor selection and averag-

ing algorithms,9 and the same control laws, and should therefore generate identical

actuator commands. Exact-match majority voting of the actuator commands then

su�ces to mask faults among the redundant channels. Notice that this arrange-

ment allows sensor failures to be distinguished from failures among the redundant

computers: sensor failure is detected or masked by the diagnostic, averaging, and

selection algorithms run by each computer, whereas failure of a computer is masked

(and optionally detected) by the exact-match majority voting of their outputs. In

contrast, systems based on unsynchronized, independent channels cannot distin-

guish accurately between the failure of a sensor and that of a computer, and may

mistake the consequences of clock drift for either.

Majority voting of actuator commands is su�cient to tolerate up to N�1
2

faults.

However, the underlying Byzantine fault-tolerant clock synchronization and inter-

active consistency algorithms can tolerate only N�1
3

faults: thus a 4-plex is required

for single-fault tolerance, and a 7-plex for two-fault tolerance. Notice, however, that

the 7-plex can withstand two simultaneous faults; if the fault arrival rate is such

that a faulty channel can be identi�ed and con�gured out of the system before the

next fault arrives, then a 7-plex can withstand 4 faults, and two-fault tolerance can

7Prior to the investigations of the SIFT project [47], the subtlety and delicacy of voting and

synchronization protocols were not properly understood and most were seriously
awed: all were
vulnerable to Byzantine faults (which constitute a fault class that had not been recognized before),

and many were incapable of tolerating less severe faults. For example, the failure of the �rst attempt

to launch the Space Shuttle was due to a synchronization problem [21], and the heavy radiation
environment at Jupiter caused loss of synchronization on the Voyager spacecraft [1].

8A given sensor may be sampled independently by several computers; all of these independent

samples must be distributed to all other computers in a Byzantine fault-tolerant manner. As
with clock synchronization, several Byzantine agreement (or interactive consistency) algorithms are

known [35], and some have been formally veri�ed down to the hardware implementation level [3,4].
9In addition to detecting faults, the processing of sensor data must deal with noise, bias, drift,

hysteresis, and other sensor-speci�c issues. The problems of sensor averaging, selection, and (espe-

cially) fault diagnosis have been considered, more or less independently, by several disciplines|for

example, control theory [13,14,24,43,51,66], arti�cial intelligence [8,55], and computer science [41].

10 Chapter 1. Introduction

be achieved by a 5-plex. Fault detection and recon�guration are complex functions,

however, and given our desire to reason formally about fault-tolerance properties,

we follow [15] and consider only the nonrecon�gurable case in this work. (Recon�g-

uration was considered in the veri�cation of SIFT [46].)

Not all faults are equal: some are \hard" faults that permanently disable the

a�icted channel; others are \soft" or \transient" faults from which recovery is pos-

sible. Examples of transient faults include SEUs (where a single bit of memory is

ipped by a cosmic ray), which can be recovered by simply restoring the a�ected bit

to its correct value. Experience indicates that transient faults are orders of magni-

tude more common than hard faults|for example, Voyager spacecraft su�ered 42

SEUs in the intense radiation surrounding Jupiter, but no hard faults [65]. It follows

that overall reliability will be much greater|or, equivalently, much less redundancy

will be required for a given level of reliability|if some attempt is made to recover

channels that su�er transient faults.

There is no �rm line between transient and hard faults considered in the abstract;

what might be merely a transient fault to one system may be a hard fault to another

that lacks the necessary recovery mechanisms. Fault-tolerant system architectures

are designed and evaluated against explicitly stated fault models. For transient

faults, we employ a fault model in which we distinguish two subclasses of faults.

State data faults are those in which the processor is working correctly (i.e., is

synchronized and executing the right task), but its local state data are cor-

rupted. If its state data were replaced with correct values, it would recover.

In our formal model, the predicate OK(i)(c) will indicate whether processor i

has state data faults that can a�ect its computation of task c.

Control faults are those in which the processor is not working correctly (i.e., some-

thing other than, or additional to, a state data fault has occurred). In our

formal model, the predicate F(i)(j) will indicate whether processor i su�ers a

control fault during the computation of the j'th task.

In our model, we think of control faults as happening spontaneously, and state data

faults as the consequences of control faults. Faults such as SEUs, in which a single

bit of state data is spontaneously corrupted, can be considered as instantaneous

control faults: we imagine that the processor computes the wrong value but then

immediately recovers, leaving a state data fault behind. Note that a state data

fault may precipitate a further control fault. For example, a word of memory may

become set to zero (a state data fault); then a subsequent divide operation using

that word might generate a divide-by-zero trap, which could halt the processor (a

control fault).

State data faults can be recovered by periodically replacing the state data main-

tained by each processor with a majority-voted version. It is not necessary to vote

1.3. Formal Models for DFCS 11

and replace all the state data, since many of them are refreshed by sampling sensors

(i.e., some of the state data are \stored" in the airframe itself [62]): only the data

that are carried forward from one frame or cycle to the next (e.g., time-integrated

data such as velocity and position) need to be voted. Even so, the quantity of state

data maintained by a modern DFCS is considerable, and performance would be se-

riously degraded if all of it were voted at every opportunity. Accordingly, exposure

is traded for performance and rather sparse voting patterns are preferred. Clearly

the less frequently a particular item of state data is voted, the longer will be the

duration of the consequences of a fault that corrupts that item. Overall reliability

will be determined by the fault arrival rate, the voting pattern, and the data
ow

dependencies among control tasks and state data items.

In this report, our goal is to develop, and formally specify, a model that describes

the operation of an N-plex with transient-recovery based on an arbitrary sparse

voting pattern. We will formally verify a theorem concerning the conditions under

which such a system masks faults successfully. A concrete instance of the theorem

(for a speci�c data dependency graph and voting pattern) might be that the system

is \safe" provided that at most two processors su�er control faults in any sequence

of �ve successive frames. Markov or other methods of reliability analysis must be

used to determine the overall reliability of the system, given assumptions about the

arrival and repair rates of control faults [15].

A fault-tolerant system should take active measures to recover from transient

control faults, in addition to the voting strategy for overcoming state data faults.

The Mars system [28,30] is a good example of a system that provides such recovery.

In our model, however, we do not consider the internal details of mechanisms that

achieve recovery from control faults, we model only their external behavior; the

purpose of our model is to derive properties of the majority voting strategy for

masking faults of all kinds and recovering from state data transient faults.

1.3 Formal Models for DFCS

In this section we sketch the larger context of the work described here, and then give

an overview of the model for fault-masking and transient-recovery that we employ.

This work was performed in the context of a research program led by NASA Lan-

gley Research Center that aims to develop a fault-tolerant architecture for DFCS

using formal methods to provide a rigorous basis for documenting and analyzing de-

sign decisions. Ultimately, we hope to provide mechanically-checked formal speci�-

cations and veri�cations for the key components of a \Reliable Computing Platform"

for DFCS, going all the way from high-level requirements down to implementation

details. Clearly, this is a major undertaking, so initially we are concentrating on

some of the better-understood requirements and levels in the hierarchy.

12 Chapter 1. Introduction

As we described in the previous section, synchronized channels and Byzantine

fault-tolerant distribution of sensor values are now fairly well-understood require-

ments. Accordingly, the �rst mechanically-checked speci�cations and veri�cations

undertaken in this program were those performed for Byzantine fault-tolerant clock

synchronization algorithms [53,58] and for a Byzantine agreement algorithm [3] and

circuit [4]. The work described here is a step towards the next higher layer in the

modeling hierarchy: the layer that uses exact-match voting to provide fault-tolerance

and transient-recovery.

Accurate modeling of that layer must account for the fact that the separate

channels are not perfectly synchronized (the clock-synchronization algorithms keep

the separate channels synchronized only within some small skew � of each other),

and that the communication and coordination of voting data takes a certain amount

of time. The work presented here ignores those details in order to concentrate on

the relationship between voting patterns, fault masking, and transient recovery.

Thus, we make the simplifying assumptions that the separate channels are perfectly

synchronized, and that the communication and voting of data constitute a single

atomic action.10

Our current work, following on from that described here, aims to eliminate these

simplifying assumptions. In other current work, we are developing and formally

verifying a hardware-assisted implementation of one of the clock-synchronization

algorithms. Future work may consider the mechanisms by which failed channels

can be recovered, or the system recon�gured. The next section gives an informal

overview of the model that is the focus of the present analysis.

1.3.1 Overview of the Fault-Masking Model Employed

In companion work at NASA Langley Research Center, Di Vito, Butler and Cald-

well [15] have developed a formal model for DFCS and derived its fault-masking and

transient-recovery properties. Their model and development is formal and rigorous

in the manner of conventional mathematical discourse. The purpose of our investiga-

tion is to construct a completely formal, machine-checked speci�cation for a similar

model, and to submit the derived properties to mechanical proof-checking. The two

investigations are complementary: the �rst is intended to model the structure of a

realistic platform for DFCS, while the second is intended to explore the problems

of subjecting formal speci�cations and veri�cations in this domain to mechanically

checked analysis.

Our model for fault masking and transient-recovery was developed in parallel

with that of [15] and di�ers from it in several details, though not in overall principle.

In this section, we brie
y sketch the model of Di Vito, Butler, and Caldwell, and

10Veri�cation of the Oral Messages Byzantine agreement algorithm [3,4] makes the same simpli-

fying assumptions.

1.3. Formal Models for DFCS 13

explain how and why ours di�ers. The relationship is described in more detail in

Chapter 4.

Di Vito, Butler, and Caldwell model a reliable computing platform for DFCS

with the following characteristics:

� The system workload is a multi-rate periodic schedule.

� The schedule is static (i.e., the sequence of frames is identical from one cycle

to another, and the subsequence of tasks within a given frame is the same in

every activation of that frame).

� All frames have equal duration; however, di�erent frames may have di�erent

numbers of tasks, and di�erent tasks may have di�erent duration. Unused

time at the end of a frame is called \slack" time; it can be used to run self-

tests. Some slack time at both the beginning and the end of each frame is

essential when discrete-update clock synchronization is used, since otherwise

tasks could be skipped (if the clock jumps forward) or repeated (if it jumps

back) [34].

� The output of a task may be used as input to a later task up to one cycle

later. Data that need to be carried further forward must be relayed through

intermediate tasks.

� Sensors are sampled and actuators commanded at most once per frame. An

underlying Byzantine fault-tolerant distribution of sensor samples is assumed,

so that each (working) channel receives identical sensor input.

� The fault model distinguishes processors that are working correctly throughout

a frame from those that are not. In our terminology, correctly working proces-

sors, or more brie
y, working processors, are those without control faults. A

fault-status predicate indicates whether a given processor is working or not in

the current frame. Faults can be either permanent (i.e., hard) or transient|

the latter is modeled by a processor whose fault-status is not working in one

frame and working in a later one. The model does not consider the mechanisms

by which such recovery might be achieved.11

� Various voting patterns are considered. In continuous voting, all state data

are voted every frame; in cyclic voting, only the outputs of tasks in the current

frame are voted in that frame; minimal voting uses the data
ow dependencies

among tasks to derive conditions that vote the minimum data each frame.

11Among the likely mechanisms are watchdog timers that trap to automatic re-initialization code,
and similar reinitialization of the losers in a majority vote. In addition, the schedule table and the

object code for the system executive and application tasks may be held in ROM, where all faults

may be assumed hard, but also extremely rare.

14 Chapter 1. Introduction

A distinguished state data item, the frame-counter is always voted at every

frame.

� All processors run identical workloads. The benchmark with respect to which

fault-masking and transient-recovery results are proved is a single processor

running the same workload that su�ers no faults.

Our model is very similar in spirit and motivation to that just described; it di�ers

in being considerably more abstract. The reason for this is that we want our results

to be as widely applicable as possible. Mechanically checked formal speci�cation and

veri�cation are very time consuming to perform and mechanically checked proofs

tend to be rather fragile. By this we mean that redoing a mechanically checked

proof to accommodate changes to the statement of a theorem, or modi�cations to

supporting lemmas, may require a quantity of e�ort and insight comparable to that

required to construct the proof in the �rst place. Thus it is often not cost-e�ective to

prove properties about a variant model by adjusting proofs from the original model.

A generally more productive approach is to employ abstraction and hierarchy: one

attempts to extract the essence of the problem and to prove the most general results

possible for an abstract formulation of the problem. More concrete models can then

be constructed as instantiations or elaborations of the abstract model, and properties

concerning the elaborations can be proved using the abstract theorem as a lemma.

In the present case, we obviously wish to derive results that are su�ciently gen-

eral that they can apply to all three of the voting schedules considered by Di Vito,

Butler, and Caldwell. We would also like them to be applicable to systems that

make rather di�erent basic assumptions|for example, systems in which sensors are

sampled and actuators commanded more then once per frame, or in which not all

cycles have identical frame schedules (so that dynamic scheduling can be accommo-

dated). We wish to state and prove general results along the lines of \provided the

voting strategy satis�es certain properties, and providing certain fault assumptions

are met, then an N-plex correctly masks faults and recovers from transients."

A little thought reveals that the essence of this problem concerns the interaction

between voting strategies, task schedules, and data dependencies. To see this, con-

sider a particular actuator command. We want the majority value for this command

to equal the \correct" value (i.e., that which would be produced by a single fault-free

processor). Clearly, this will be so if a majority of processors are working correctly

at the time they execute the task concerned and if they receive the correct input

values. Input values either come from sensors (and our requirement here is that

all working processors receive the same values), or they are the outputs of previous

tasks, which may or may not have been voted. In the case of voted outputs, we

recurse on the conditions that establish the correctness of voted outputs; in the case

of nonvoted outputs, the requirement is that the majority were working correctly

when that task was executed, and that their inputs were, in turn, correct at that

1.3. Formal Models for DFCS 15

point. Obviously a development along these lines must make very careful statements

about its assumptions, and there are many tricky details to be taken care of, but

it is equally obvious that the notions of cycles and frames are not essential to the

argument: it is the order in which tasks are executed, the data
ow dependencies

among them, and the placement of majority votes that determine the correctness of

the overall scheme.

Thus, frames and cycles are not explicitly represented in our model: we represent

the system workload by the data
ow dependency graph among task activations,12

and a record of the order in which tasks are activated. We allow voting to be

speci�ed for the outputs of any task activation, and we model processor failure at

the task activation level (i.e., a given processor is either working or not working

during a given task activation). It should be clear that a periodic, frame-based

interpretation can be achieved by simply imposing additional structure on the task

activation data
ow dependency graph and on the task execution schedule. (For

example, by requiring them to have a periodic structure, allowing only one voted

task per frame, treating failure during any task activation as a failure for the whole

frame, and so on.) In this way, results proven for our abstract model provide a basis

for deriving results for more concrete models relatively easily.

In addition to cycles and frames, we have abstracted away another aspect of

the model of Di Vito, Butler, and Caldwell: the frame-counter. Some may consider

our use of abstraction to have been overly aggressive in this regard. Our original

motivation was as follows. For a given processor to compute the correct outputs

for a certain task activation, it must be working correctly during that task, and

it must get the correct inputs. Whether it gets the correct inputs is a function of

when data were voted, and of how long the processor has been working correctly.

Here, \working correctly" means correctly executing the right programs at the right

time, but on possibly corrupted data|i.e., it is the absence of control faults. We

do not model the mechanisms by which a processor that has been not working (i.e.,

has su�ered a transient control fault) gets back into the working state (i.e., recovers

from the control fault). Part of this process may involve purging internal corruption

(e.g., a stuck-at carry-
ag) by means of a system reset, or a power cycle. Another

part may involve reloading external state data (such as the identity of the current

point in the task schedule|i.e., the frame counter). Surely, reloading this datum is

simply part of the internal process of recovery from a control fault, and is therefore

part of an activity that we have explicitly chosen not to model.

12A task properly refers to a particular program, viewed as a static entity (e.g., as a sequence

of bytes, or as a function from inputs to outputs), a task activation refers to an instance of that
program in execution. There is only one instance of each task, but it gives rise to many activations.

Sometimes, when the context makes the intended interpretation clear, we use the shorter term task

to mean task activation.

16 Chapter 1. Introduction

A counter-argument to this position would observe that the only reliable source

for such external data is the majority-voted consensus of the other processors. Thus,

this part of the process for recovery from control faults depends on the voting

strategy and on the mechanism for recovery from state data faults|the very core

of what we have chosen to model. We are partly persuaded by this argument, but

note that the data concerned di�er from other state data treated within the model

in that they are not produced and consumed by application tasks but by the system

executive itself. On the other hand, we are not attracted to a special-case treatment

of the frame counter|if other system state data needed to be recovered in a similar

way, another special-case adjustment to the model might be needed.

Our current preference thus remains the exclusion of the frame counter from our

basic system model. However, the frame counter (and other state data used by the

executive rather than by the application tasks) can be introduced quite simply and

naturally when the model is instantiated: simply introduce a voted task (interpreted

as the vote of the frame counter and other system state data) at the beginning of each

frame13 and introduce a data dependency of all other tasks within the frame on the

output of that particular task. This last is an artifact of the model (in that no real

data
ow need occur), but serves to establish the (control) dependency of subsequent

tasks upon the correctness of the value for the frame counter obtained by (the task

corresponding to) the vote on its value. The task that votes the frame counter is

understood to be a standard task performed by all (synchronized) processors at

frame-start time, independently of whether they (already) know what frame it is

they should be executing.

Although the modeling is indirect, this approach allows the properties of sys-

tems with a voted frame counter to be derived correctly, while preserving the

abstractness|and hence the wider applicability|of our model. Unlike special-case

treatment for the frame counter, our approach easily accommodates more or less

frequent voting of this value, and the introduction of additional state data that are

required for the correct execution of the executive itself.

In Chapter 2, we present the details of our fault-masking model in the form of

a traditional mathematical development.

13In [15], all voting occurs at the end of each frame; thus, in this case, the identity of the current

frame is recovered by the vote at the end of the previous frame. Clearly, our approach can be

adjusted to accommodate this alternative arrangement.

Chapter 2

The Fault-Masking Model

Our goal is to prove that, subject to certain conditions, an N-plex provides transient-

recovery and fault masking for a certain class of faults. Our �rst requirement, there-

fore, is a benchmark model for correct, fault-free behavior, against which the e�cacy

of transient-recovery and fault masking in the N-plex may be judged. We take as

our benchmark a model for the behavior of a fault-free process-control system. Our

model for an N-plex will then compose N fault-prone versions of the basic model,

together with some voting and recovery mechanisms, and our theorem will estab-

lish that the voted results of the N-plex equal those of the fault-free system (under

suitable conditions). We begin by describing our model for fault-free process control.

2.1 A Model for Fault-Free Process Control

A process-control system manages some physical device by sending control signals

to actuators . The values of the control signals are determined by calculations based

on the values of sensors that monitor the device and on a record (maintained by

the process-control system) of the state of the system. The process-control system

is internally composed of computational tasks that are activated periodically in

order to sample sensors, perform the necessary calculations, and send values to the

actuators. Some tasks may also perform internal housekeeping functions. Because

task activations may depend on the results of other task activations, there is a

data
ow dependency among task activations that the execution schedule must take

into account. The \slots" in the execution schedule are called cells1; a process-

control system requires a speci�cation of which tasks are assigned to which cells, the

data
ow relationships among cells, and the order in which cells are to be executed.

These ideas are formalized in the following de�nitions.

1In a frame-based system they are often called subframes.

17

18 Chapter 2. The Fault-Masking Model

We assume

� A set C of cells , and

� A relation G � C � (IN� C) (where IN denotes the natural numbers),

and we de�ne

� M
def
= f1; 2; : : : ; jCjg.

Cells correspond to the activations (or executions) of tasks (to be formally de-

�ned later) or the sampling of sensors; the relation G records the data
ow dependen-

cies among task activations associated with cells: the interpretation of (i; (n; j))2 G

is that the output of the task activation (or sensor sample) associated with cell i

supplies the input for the n'th argument of the task activation associated with cell

j. A simpli�ed relation

� G
def
= f(i; j)j9n : (i; (n; j)) 2 Gg

captures just the basic data
ow dependencies among cells, without concern for which

input of cell j it is that receives its data from i. We will ensure by conditions given

later that G is a directed acyclic graph|so that there are no circularities in the

dependencies among cells.

Note that the set C of cells comprises all the task activations performed during

a single run of the system (which may extend for the entire lifetime of the system).

It is therefore potentially unbounded (though �nite) in size. For many (statically

scheduled) process-control systems, the set C and its associated data dependency

graph G will have a repetitive structure induced by the \unrolling" of a periodic, or

cyclic, pattern of activity.

Cells with indegree zero in G are called sensor cells; those with outdegree zero

are called actuator cells. The set of sensor cells is denoted CS ; that of actuators is

denoted CA. Nonsensor cells (including actuator cells) have a computational task

associated with them and are called active-task cells. The set C nCS of active-task

cells is denoted CT .

Each task activation (or sensor sample) generates a value that is either com-

municated to an actuator or stored so that it will be available as input to later

task activations. The system state records these stored output values. Formally, we

de�ne

� A set D of domain values, and

� A set of states S � C ! D.

The data values computed, stored, and manipulated by the system are assumed

to be drawn from the uninterpreted domain D. The system state is represented by a

2.1. A Model for Fault-Free Process Control 19

function from cells to this domain: if � 2 S is the instantaneous state of the system,

and c is a cell, then �(c) denotes the output value stored for that cell. It may seem

that a system satisfying this description must have a huge amount of storage in order

to record the values of all task activations for all time. This is not so. Anticipating

de�nitions that are given below, we observe that tasks are executed in a sequential

order that respects the dependency ordering represented in the graph G, and run

to completion. There is no need to record a value for a cell that has not yet been

executed, nor for one whose immediate successors in the relation G have already

completed. Although this result is intuitively obvious, its formal veri�cation is an

interesting exercise (see page 47).

Formalizing the notion of sequential execution, we introduce

� A bijection sched:M ! C, with

� Inverse when:C !M .

The interpretation here is that the i'th task execution (or sensor sample) is the

one associated with cell sched(i); conversely, the activity at cell c is the when(c)'th

to be executed. We require that the order of execution respect the data
ow depen-

dencies recorded in G:

(i; j) 2 G � when(i) < when(j):

Notice that this requires that G is acyclic.

Active-task cells have some computational task associated with them, so we

require

� A set T � S ! D of task-functions , and

� A function task:CT ! T .

When an active-task cell c executes, the function task(c) is applied to the current

state, say �, yielding the result task(c)(�). This is then stored in the system state

as the value of cell c to yield a new state � . That is,

� = � with [c := task(c)(�)]

where with [: : :] denotes function modi�cation (as in Ehdm).2 The only compo-

nents of the system state that may in
uence the result are those of the immediate

2The notation f with [x := a], where x is a value in the domain of f and a a value in the range,

denotes a function with the same signature as f de�ned by

f with [x := a](y) = if x = y then a else f(x):

20 Chapter 2. The Fault-Masking Model

predecessors of cell c in the data
ow dependency graph G.3 Formally, we state this

as a requirement that the result be functionally dependent on just those values:

(8(a; c) 2 G : �(a) = �(a)) � task(c)(�) = task(c)(�):

Sensor cells store their results in the system state just like active-task cells.

However, they take no input from the system state; instead, they sample properties

of the external environment (including control inputs). These properties vary with

time, so it might seem that sensors should be modeled as functions of real-time. In

fact, this is unnecessary and inappropriate, since our model is not concerned with

real-time properties such as absolute execution rates, but with those of sequencing

and voting. We want to prove that if an N-plex gets the same sensor samples as

an ideal fault-free system, then it will deliver the same actuator commands (despite

the occurrence of faults). Thus, we need only model the sensor samples actually

obtained, which can be done by modeling sensor samples as functions of position in

the execution schedule (i.e., we use the number of cells executed as our notion of

\time"). Thus we introduce

� A set S �M ! D of sensor-functions , and

� A function sensor:CS ! S.

When a sensor cell c executes, the sensor-function s = sensor(c) samples the

environment (at time when(c)) to yield the value s(when(c)). This is then stored

in the system-state as the value of cell c.

Formally, the execution of cells is modeled by the function

� step:S � C ! S

where

step(�; c)
def
= � with [c := if c 2 CS then sensor(c)(when(c)) else task(c)(�)]

is the new state that results from executing the task of cell c in state � at time

when(c).

We are interested in the state after the system has executed some number m of

cells according to its schedule. This is modeled by the function

� run:M ! S

3Operationally, the function task(c) is applied to the tuple of values

(�(c1); �(c2); : : : ; �(cn))

where (ci; (i; c)) 2 G and n = indegree(c).

2.2. The N-plex Model 21

where

run(0) 2 S;

run(m+ 1)
def
= step(run(m); sched(m+ 1)):

A variant is the function

� runto:C ! S

where

runto(c)
def
= run(when(c))

is the state of the system when execution of its schedule has reached cell c. Observe

that run(0), the initial state, is chosen arbitrarily.

2.2 The N-plex Model

In this section, we admit the possibility that machines may fail and we introduce

replication and voting to overcome that fallibility.

We assume a replicated system comprising r � 3 component systems of the type

described in the previous section and we de�ne

� R
def
= f1; 2; : : : ; rg.

In the following, we will often refer to the component systems as \machines."

Component machines may fail and revive independently; at any time a machine

is either \failed" or \working." This is speci�ed by a function

� F :R! (M ! fT; Fg)

where F(i)(m) is T just in case component machine i is failed at timem.4 Intuitively,

a component machine i is failed at time m if it su�ers a control fault at any point

during execution of the task scheduled at time m. We know nothing at all about the

behavior of failed component machines. Working (i.e., non-failed) machines correctly

compute the function associated with the task scheduled at time m. However, the

result computed may be incorrect if an earlier failure has caused the input data to

be bad. A machine that is working correctly, but on bad data, has state data faults

that will eventually be overcome through majority voting of state data.

States of the replicated machine are drawn from the set

� R � R! S.

4A function with range fT; Fg can be interpreted as the characteristic predicate of a set (this

is how sets are de�ned in Ehdm). Thus F(i) can be interpreted as the set of times when the i'th

machine is failed during execution of the cell scheduled at that time.

22 Chapter 2. The Fault-Masking Model

Thus, if � 2 R is a replicated state, then �(i) is the state of the i'th component

machine, and �(i)(c) is the value of cell c in that machine.

The components of a replicated machine behave much like a single machine,

except that components may fail, and so they periodically vote their results. Thus

we assume a set

� CV of voted cells

and require

CA � CV � CT

(that is, all actuator cells are voted, but no sensor cells are).5

Each execution step in the replicated machine takes place in two stages. In the

�rst stage, each working component machine performs a single (ordinary) step. This

is speci�ed by the function

� sstep:R� C ! R

where

:F(i)(when(c))� sstep(�; c)(i) = step(�(i); c):

This de�nition states that a working component machine updates its own state in

exactly the same way the unreplicated system model would, given the same state.

Two important consequences of this de�nition may not be obvious:

� If cell c is a sensor cell, then the value of step(�(i); c) is

�(i) with [c := sensor(c)(when(c))]

(this comes from the de�nition of step). Note that the expression in the

with clause is independent of the machine i; thus, as noted above, our model

requires that all working machines get exactly the same sensor samples.

� If machine i is failed when execution of cell c should be performed, we

know nothing whatsoever about the subsequent state of that machine, i.e.,

sstep(�; c)(i). We do not assume merely that the value stored for cell c could

be incorrect; we allow the whole state (of that machine) to be damaged or

destroyed.

When a voted cell is executed, the working component machines each calculate

the majority vote of the full set of all their individual results. This is speci�ed by

the function

5Sensor cells are not voted because we assume an underlying Byzantine fault-tolerant distribution

mechanism which ensures that all working machines get the same sensor samples. This assumption

is captured in the de�nition of the function sstep.

2.2. The N-plex Model 23

� vote:R� C ! R

where

:F(i)(when(c))� vote(�; c)(i) = �(i) with [c := majff�(j)(c)jj 2 Rgg];

maj is the \majority" function, and ff�(j)(c)jj 2 Rgg denotes the bag (multiset) of

values recorded for cell c by all the component machines.6

As with the sstep function, we know absolutely nothing about the state of a failed

component machine after a vote in which it should have participated. Another inter-

esting element of this de�nition is that all working machines are speci�ed to perform

a majority vote on the same bag of values: this suggests they must not only read

each other's values correctly, but they should agree on the values attributed to faulty

components. These are precisely the requirements that \Byzantine agreement" (also

known as \interactive consistency") algorithms are required to satisfy. It may seem,

therefore, that any realization of this model should employ a Byzantine agreement

algorithm to distribute the values to be voted among all of the component machines.

This is unnecessary, however, since it is a majority vote that is being computed, and

our results will establish that the good values comprise a majority. Thus, the values

ascribed to failed processors are irrelevant, and the working processors do not, in

fact, need to agree on those values. We do not prove this result here; we regard it

as a proof obligation on the implementation.

The overall behavior of the replicated machine is speci�ed by the function

� rstep:R� C ! R

which is simply the appropriate combination of the two steps above:

rstep(�; c)
def
=

(
vote(sstep(�; c); c) if c 2 CV

sstep(�; c) otherwise.

Functions rrun and rrunto are de�ned analogously to the single machine case:7

� rrun:M ! R,

6Note that maj is a partial function: it is unde�ned if an absolute majority of components do

not agree on a value. Our results will always take care to establish conditions in which it is de�ned.
A fast and very clever algorithm for calculating the majority function was discovered by Boyer and

Moore during the SIFT project [5].
7Readers unfamiliar with higher-order logic may �nd the, so-called \Curried," functions that

we employ somewhat strange. Rather than the Curried application rrun(m)(i)(c), they might

prefer the application of a function with multiple arguments: rrun(m; i; c). The advantage of our

approach is that the separate components of the application have individual meaning and can be
manipulated individually: rrun(m) is the state of the replicated machine afterm steps, rrun(m)(i)

is the state of the i'th component machine at that point, and rrun(m)(i)(c) is the value stored for

cell c in that state.

24 Chapter 2. The Fault-Masking Model

is given by

rrun(0)
def
= (�i: run(0))

rrun(m+ 1)
def
= rstep(rrun(m); sched(m+ 1))

and

� rrunto:C ! R

by

rrunto(c)
def
= rrun(when(c)):

Notice that our model assumes that computation and voting are atomic, and that

the components of the replicated machine are completely synchronous. These are

idealizations of reality and we intend to explore more realistic assumptions in later

work. They are adequate, however, for the purpose of the current investigation,

where we are primarily concerned to develop the conditions under which majority

voting successfully masks transient failures.

2.3 Fault Tolerance and Transient-Recovery

Our goal in this section is to show that, under certain conditions concerning the

failure \pattern" F , the replicated machine produces the same actuator behavior as

the single machine, despite failures among the components of the replicated machine.

Our requirements are that the majority-voted value for each actuator should be the

correct value|that is, the value produced by a single fault-free system. In our

model, actuator cells are voted, so that any nonfaulty component machine will set

its own value for an actuator cell to that of the majority. Thus, the correctness

statement can be rephrased as the requirement that the value computed for an

actuator cell by any nonfaulty component machine should be the correct value.

We can state the condition that a component machine i have the correct value

for cell c in terms of a predicate:

� good-value:R� C ! fT; Fg

where

good-value(i; c)
def
= rrunto(c)(i)(c) = runto(c)(c):

We then seek a predicate

� safe:C ! fT; Fg

2.3. Fault Tolerance and Transient-Recovery 25

such that

8c 2 CA; i 2 R : (safe(c)^ :F(i)(when(c)))� good-value(i; c):

Intuitively, safe(c) will capture the conditions under which the replicated machine

has enough working components, and those components have been working for long

enough since their last failure, that good values form a majority and faults will be

masked successfully.

If only actuator cells were voted, it would be trivial to derive the required result:

safe(c) would be the condition that a majority of components have been working

continuously since the very �rst cell through the computation and vote of cell c. That

this condition is su�cient follows from the fact that working component machines

given the same inputs produce the same results as each other; failed machines can

produce anything (including nothing). Thus, the continuously working machines

will agree among themselves at every voting stage and, since they are hypothesized

to be in the majority, leave their states unchanged. Since actuator cells are voted,

any machine that is working during the vote of an actuator cell will acquire the

correct value from this continuously-correct majority.

To see that this condition is necessary, suppose that there has not been a ma-

jority of components working continuously since the beginning. Then a majority of

machines have failed at some time or other prior to the execution of cell c. When

they failed, they may have destroyed their system state. Since we are now assuming

no votes other than at actuators (and actuators do not provide input to other cells),

this corruption may persist even after a failed machine starts working again. Thus a

failed machine cannot be guaranteed ever to recover fully. Since these machines are

hypothesized to form a majority by the time cell c is executed, they could outvote

the good machines at that point.

Without intermediate voting of state values, a component machine that su�ers a

transient failure may never fully recover, since there is no way for it to repair its state

data. Intermediate voting can allow this repair to take place, so that the conditions

in the predicate safe become less Draconian. There are many possible strategies for

intermediate voting: we can vote at every cell or only at certain cells, and we can

vote the entire state, or just some portions of it, or just the value computed at that

cell. Voting more data or voting more often than required can be very expensive,

using up resources that could be put to better use. Early DFCS maintained very

little state data and it was feasible to vote the entire state every frame. Modern

systems maintain much more information and it is necessary to be more sparing

in the frequency of voting, and in the quantity of data voted. Obviously there

is a trade-o� here: voting less frequently, or less data at each vote, may increase

the time taken to recover from transients, and thereby reduce the reliability of the

system. Clearly, overall reliability depends upon the relationship between the voting

strategy, the fault arrival rate, and the data
ow dependencies in the system. We

26 Chapter 2. The Fault-Masking Model

need to encode this relationship as the condition in the predicate safe. Intuitively,

the condition must ensure that, for every cell, a majority of machines have been

working for long enough since their last failure that they have acquired correct

values (from sensor samples or votes) for data values that ultimately contribute to

the value of cell c, and have computed all intermediate values correctly. Stating this

condition formally requires some additional de�nitions.

We de�ne

� foundation:C ! P(C), where P denotes powerset ,

recursively as follows:

foundation(c)
def
=

8><
>:
fcg if c 2 (CS [CV)

fcg [
[

(b;c)2G

foundation(b) otherwise

and

� support:C ! P(C)

by

support(c)
def
=

8><
>:
fcg [

[
(b;c)2G

foundation(b) if c 2 CV

foundation(c) otherwise.

The foundation of a cell c consists of all those cells that directly or indirectly con-

tribute input data to c by a path that does not pass through any (other) voted cells.

Note that a voted or sensor cell is its own foundation.

Figure 2.1 gives a graphical representation of these concepts. In the �gure, circles

indicate cells, double circles indicate voted cells and the arrows indicate data
ow

dependencies (the arrow from cell D to cell A represents the arc (A;D) 2 G; the

direction of the arrowhead indicates the dependency relation, rather than the
ow

of data). The left to right position of cells on the page suggests the order in which

they are executed. In this case, the foundation for cell J is just fJg (since J is

a voted cell), that for A is fAg (since A is a sensor cell), and that for cell D is

fA;C;Dg.

The support for a nonvoted cell is simply the foundation for that cell; the support

for a voted cell is the union of the foundations of all the cells that directly provide

input to that cell. The intuition here is that if a machine computes correct values

for all the cells in support(c), and if the machine keeps working, then the value

eventually computed for cell c will be correct. In Figure 2.1, the supports for A and

D equal their foundations, whereas the support for the voted cell J is fA;C;D; Jg.

A machine that is working throughout the support of cell J will compute the correct

value for that cell: since it is working at sensor cell A, it will acquire the correct

2.3. Fault Tolerance and Transient-Recovery 27

K

F

E

D

B

A

C

G

H

J

Figure 2.1: Example Data
ow Dependency Graph

sample value from that sensor; since it is working at voted cell C, it will acquire the

correct value for that cell during its majority vote, even if it had been failed earlier

and had not computed the right value itself 8; since it has the correct input values

for cell D and is working at that cell, it will compute the correct output value; and

since it has (from D) the correct input value for cell J, and is working at J, it will

compute the correct value for J.

We need just a few more de�nitions. The function

� committed-to:C !M

is de�ned by

committed-to(c)
def
= minfwhen(a)ja 2 support(c)g:

In the example of Figure 2.1, committed-to(J) = when(A). Once a machine reaches

committed-to(c) in its schedule, it must keep working until when(c) if it is to compute

the correct value for cell c. Conversely, if it does keep working throughout this

period, it will compute the correct value for cell c even if its own state data are

corrupt at the beginning of the period. This is because all the data required to

compute cell c are derived either from sensor samples, or from voted values, that are

acquired at or later than committed-to(c). Thus, provided enough other machines

8We are assuming here that enough machines were working correctly at c that correct values

form the majority. We cannot give a characterization of the necessary condition yet, since we are

in the process of developing the concepts that make its statement possible.

28 Chapter 2. The Fault-Masking Model

are working, this machine will acquire good values during the votes and sensor-

samples and its own bad state data will not contribute to the result.

The function OK captures the condition under which a particular component

machine has been working for \long enough" since its last fault that any bad state

data values have been replaced by good values through votes and sensor samples|so

that it is able to compute a good result for the current cell. Thus,

� OK:R! (C ! fT; Fg)

is de�ned by

OK(i)(c)
def
= (8m : committed-to(c) � m � when(c) � :F(i)(m)):

In other words, OK(i)(c) is the condition which ensures that component machine i

has no state data faults that can a�ect the value computed for cell c.

For the replicated machine to be safe, a majority of its components must be OK

for every cell. We therefore introduce the function

� MOK:C ! fT; Fg

(for Majority OK) de�ned as follows

MOK(c)
def
= 9� � R; j�j > r=2 : i 2 � � OK(i)(c):

We then de�ne the predicate safe as follows

safe(c)
def
= (8a : when(a) � when(c) �MOK(a)):

That is, the replicated machine is safe at cell c if, the condition MOK holds at c

itself and at all cells evaluated earlier than c.

Now we can state and prove our main theorem. This \Consensus Theorem" is

similar to lemmas of that name in [15].

Theorem 1 (Consensus Theorem) If safe(c), then

8j 2 R : OK(j)(c)� good-value(j; c):

Proof: The proof is by strong induction on when(c). The basis is the case

when(c) = 1, in which case c must be a sensor cell, and so

rrunto(c)(j)(c) = sensor(c)(1) = runto(c)(c)

as required.

For the inductive step, suppose the theorem true for all cells a such that

when(a) < when(c) and let j be a component machine such that OK(j)(c). If

2.3. Fault Tolerance and Transient-Recovery 29

c 2 CS, the argument is the same as for the basis case, and so we consider c 2 CT

and consider a such that (a; c) 2 G. Since the result of c is a function of its inputs,

the result will follow if we can demonstrate

good-value(j; a):

There are two cases to consider.

Case 1: a 2 CV . It may not be that OK(j)(a) and so we cannot appeal to the

inductive hypothesis directly, but we do know that MOK(a) and hence that

a majority of machines exempli�ed by k (possibly not including j) satisfy

OK(k)(a). By the inductive hypothesis, good-value(k; a) for these machines.

Now, we hypothesized OK(j)(c) and hence :F(j)(a). It follows that during

the voting stage of the execution of cell a, machine j will acquire the majority

value for that cell, i.e., good-value(j; a), as required.

Case 2: a 62 CV . A component machine i is OK for cell c if it is working throughout

the period from committed-to(c) to when(c). Observe that the support of a

nonvoted cell a is a subset of any cell c to which it provides input. It follows

that committed-to(a) can be no earlier than committed-to(c). We must also

have when(a) < when(c). Thus OK(i)(c) � OK(i)(a) and the result then

follows directly from the inductive hypothesis.

2

The result we seek follows from the Consensus Theorem:

Corollary 1 For c 2 CA, if safe(c) then

8i 2 R : :F(i)(when(c))� good-value(i; c):

Proof: The statement of the corollary implies MOK(c), so there must exist j 2 R

such that OK(j)(c). The Consensus Theorem then supplies

8j 2 R : OK(j)(c)� good-value(j; c)

which, on expanding the de�nition of good-value , gives

rrunto(c)(j)(c) = runto(c)(c):

Now c 2 CA, so c is a voted cell, and the de�nition of the voting function ensures,

8i; j 2 R : (:F(i)(when(c))^:F(j)(when(c)))� rrunto(c)(i)(c) = rrunto(c)(j)(c);

30 Chapter 2. The Fault-Masking Model

since all working machines acquire the majority value as the result of voted cells. By

de�nition, OK(j)(c)� :F(j)(when(c)). Hence, for any i 2 R such that :F(i)(c),

rrunto(c)(i)(c) = rrunto(c)(j)(c) = runto(c)(c)

and we conclude good-value(i; c) as required. 2

In words, the corollary states that each working component of the replicated

machine computes the correct value for an actuator if a majority of machines is

working throughout the period from committed-to(c) to when(c) for each cell c in

the schedule up to and including the actuator concerned.

In Chapter 3, we consider the formal speci�cation of this model in Ehdm, and

the mechanically-checked veri�cation of the results derived above.

Chapter 3

Speci�cation and Veri�cation

in EHDM

In this chapter we give an overview of the formal speci�cation and veri�cation in

Ehdm of the model presented in Chapter 2. It is not our purpose to provide a general

introduction to Ehdm here; readers unfamiliar with the Ehdm language and system

are referred to [54]. Our purpose is rather to discuss some of the more interesting

issues raised by the formalization, and to provide a road map to the complete list-

ings of the Ehdm speci�cation and veri�cation, which are given in the Appendices.

The LaTEX-printed Ehdm speci�cation is given in Appendix A; a cross-reference

from identi�ers to the module in which they are declared is given in Appendix B;

Appendix C reproduces the summary from the Ehdm proof-chain analysis for the re-

sult corresponding to Corollary 2. All the material in the Appendices was generated

directly by the Ehdm system.

Since the speci�cation language of Ehdm is a rather rich, strongly typed higher-

order logic, it was possible to cast the model presented in the previous chapter into

Ehdm fairly directly. The speci�cation of the basic process-control model is given

in the module simple machine (page 59). The semantic subtypes of Ehdm allowed

us to specify the various types of cell in a very natural and convenient manner.

For example, CT , the type corresponding to the active-task cells is speci�ed as the

subtype of C (the type of all cells) satisfying (�c : cell type(c) 6= sensor cell). We

can then de�ne the signature of the function task as CT ! task fn and the Ehdm

system will ensure that applications of the form task(c) occur only in contexts where

c can be proven to satisfy the subtype predicate for CT . These proof obligations

are called type-correctness-conditions (or tcc's for short) and are placed in system-

generated modules whose names end in tcc. The de�nition of the function step, for

example, causes two such tcc's to be generated in the module simple machine tcc

(page 61). This latter module contains several other tcc's, including three that

are required to demonstrate the nonemptiness of the subtypes introduced, one that

31

32 Chapter 3. Speci�cation and Veri�cation in EHDM

is necessary to demonstrate the well-foundedness of the recursive de�nition for the

function run,1 and two others that are similar to those just discussed for step. Ehdm

provides a tool called the proof-chain analyzer that checks whether a veri�cation is

complete. Among the conditions that it enforces is the requirement that all tcc's be

proven.

System-generated tcc modules automatically include trivial proof declarations

for the formulas concerned. When these automatically generated proof declarations

do not su�ce to establish their corresponding theorem, the user must construct

more elaborate proof declarations in another module. (Being system generated,

and crucial to the type-correctness of the speci�cation, tcc modules are protected

against modi�cation by the user.) The three such declarations needed in this case

are given in the module simple machine tcc proofs (page 62). A similar naming

convention is applied to other modules containing proofs for tcc's. In order to

satisfy the nonemptiness requirements on subtypes, we introduce three constants

corresponding to an arbitrary sensor, actuator, and active-task cell respectively

(strictly, the last of these is unnecessary|actuators are also active tasks). In any

application of the speci�cation, instantiations for these constants must be supplied.

We do not de�ne the relation G in the Ehdm speci�cation; the simpler relation G

is su�cient to state and derive all the results required. We introduce initial state

as an arbitrary constant of type state to serve as the initial value in the recursive

de�nition for the function run.

The rest of the speci�cation in module simple machine is a fairly direct translit-

eration of that given in Section 2.1, with one exception: the Ehdm speci�cation has

an extra argument for the function step. This was intended to allow for the descrip-

tion of systems with a less rigid scheduling model than that eventually employed.

Thus, whereas Section 2.1 has

step(�; c) = � with [c := if c 2 CS then sensor(c)(when(c)) else task(c)(�)];

the Ehdm speci�cation has

step(�; c;m) = � with [c := if c 2 CS then sensor(c)(m) else task(c)(�)]:

However, this latter version of the function is always used in the form

step(�; c; when(c)), so that it is equivalent to the �rst version.

The module simple props (page 64) states and proves some simple consequences

of the previous de�nitions that are needed later. One, stay correct simple, is an

example of the type of condition that is often glossed over in conventional mathe-

matical presentations, such as that in Chapter 2. It states that if the output of cell

1The annotation \: : :by identity" in the recursive de�nition of run establishes identity as

the measure function for the recursion. The value of the measure function is required to be strictly

decreasing across recursive calls, and a tcc is generated to ensure that this is so.

33

a is used as an input to cell c, then the value recorded for a immediately after it is

computed will still be the same when it is accessed (possible much later) in order

to be used in the computation of c. In the case of the simple machine, this result

is straightforward; it is less so in the case of the replicated machine (since failures

must be accounted for). In either case, this is the step that will require a modi�ed

proof if the speci�cation is adjusted to model systems that do not keep all cell values

for all time (see page 47).

The proof of stay correct simple is by induction. The particular form of

induction used is a variant of simple induction over the natural numbers. This

is stated as the higher-order theorem induction m in the module natinduction

(page 63). This module states two other induction schemes; all three are derived

from a statement of Noetherian induction given by the axiom general induction

in the module noetherian (page 62). Note that general induction is the only

induction scheme stated as an axiom; all the others are theorems derived from this

single axiom. Notice, too, that the module noetherian has assumptions (stated in

the assuming clause) that must be discharged in any instantiation. The module

natinduction discharges these assumptions for its particular instantiation.

The next three modules, sets (page 66), cardinality (page 66), and

orderedsets (page 67), introduce concepts related to sets that are needed in order

to state the model for the replicated machine. Sets are modeled by their character-

istic predicates; the type of (the predicate representing) a given set is dependent on

the type supplied as the actual parameter to the sets module. The sets module

de�nes the basic set operations of union, intersection, subset, and the like, as higher-

order functions. Those unfamiliar with the use of higher-order logic in speci�cations

may �nd these de�nitions particularly interesting.

The module cardinality introduces the notion of the cardinality (size) of a set

and de�nes some of its properties axiomatically. Some of the axioms we use, for

example

ja[bj+ ja \ bj = jaj+ jbj;

are valid only for �nite sets. Accordingly, an assumption is attached to this module

to ensure that only �nite types may be supplied as its actual parameter. The

Ehdm proof-chain analyzer checks that module assumptions are discharged in any

instantiations before the overall veri�cation is declared complete.

The module orderedsets de�nes the function min (the value of the smallest

element) on sets whose elements are drawn from a type with a suitable ordering

relation.

The replicated systemmodel is developed in the module repl machine (page 68).

The speci�cation follows very closely that given in Section 2.2. As with the step

function of simple machine, the functions vote, sstep, and rstep all take a third

argument in the Ehdm speci�cation, but are always used in a manner that is consis-

tent with the two-argument forms given earlier. Another slight di�erence is in the

34 Chapter 3. Speci�cation and Veri�cation in EHDM

speci�cation of the condition that majority voting is performed only for voted cells.

In the Ehdm speci�cation, this is given in the axiom for the vote function, rather

than in the de�nition of rstep. The two approaches are obviously equivalent, but if

we were to revise the Ehdm speci�cation, we would change it to the alternate form

used in Section 2.2. The form currently employed suggests that the voter is always

applied, but only actually does a vote when the cell is a voted one; it would be more

natural to specify that the voter always votes, but is applied only when the cell is a

voted one.

The required property of the maj (majority vote) function is speci�ed in the

axiom maj ax. Note that by specifying this function relative to a set of component

machines, rather than relative to the values recorded by their states, we avoid the

need to introduce the concept of a multiset. The majority vote function used in

Section 2.2 is a partial function: it is unde�ned if an absolute majority does not

exist. Functions in Ehdm are total, however: the maj function, for example, has

some value even when an absolute majority does not exist|we simply know nothing

about what that value may be. In order to make use of maj ax, the veri�cation must

always establish that the conditions for the existence of an absolute majority are

satis�ed. Thus the distinction between a truly partial function and a total function

whose values are unconstrained when applied outside its domain is moot in this

case.2

Module supports (page 70) introduces the functions foundation, support, and

committed to that are needed in the statement of the Consistency Theorem. Sub-

sidiary functions backup and critical times are used in the de�nitions.

The module correctness (page 72) de�nes the functions OK and MOK, the predi-

cates safe and correct, and states the result, which corresponds to the Consen-

sus Theorem, and is the main result proved in the veri�cation. The de�nition for

safe given in the Ehdm speci�cation is weaker than that given in Section 2.3, and

so the result is stronger than Theorem 1 of Section 2.3. The di�erence is that the

formal speci�cation of safe(c) requires only that the replicated machine be MOK

for those cells a that transitively contribute input to c; the de�nition in Section 2.3,

on the other hand, requires that the replicated machine be MOK for c and for all

cells executed earlier than c. Clearly the cells that transitively contribute input to

2If f :A ! B is a partial function and x 2 A a value outside the domain of de�nition of f ,
then the term f(x) has no meaning. There are two ways to capture the useful properties of partial

functions in Ehdm: one is to use a total function with signature A ! B, but to specify nothing

about its values outside its domain of de�nition. In this case, the term f(x) has some value, but
we don't know what it is. Expressions like x = y � f(x) = f(y) are meaningful, and true, however.

The other approach is to use a total function with signature A0 ! B where A0 � A

is the true domain. The quotient function, for example, is de�ned this way in Ehdm:
quotient: function[number;nznum ! number], where nznum is the type of nonzero numbers de-

�ned as a subtype of numbers by the predicate (�x:x 6= 0). In this case, the term quotient(x;y) is

type-correct only if it can be proved that y 6= 0 in the context of its use.

35

c must all be executed earlier than c, and so the second condition implies the �rst.

The reason we used a stronger de�nition for safe in the traditional mathematical

presentation than we did in the formal speci�cation is that the stronger de�nition al-

lows Theorem 1 to be proved by simple induction over the natural numbers, whereas

the weaker de�nition requires a proof by Noetherian induction over the structure of

the data
ow dependency graph. Noetherian induction is rather tricky to state and

carry out in quasi-formal notation (and may not be familiar to all readers) and so

we opted for the stronger notion of safe, and hence a weaker theorem, in the tra-

ditional development. In the truly formal notation of Ehdm, it is no more di�cult

to perform Noetherian than simple induction, and so we used the de�nition for safe

that gave the strongest theorem.

The module connect (page 74) establishes a crucial lemma called stay correct

which states that if a is a cell that provides direct input to cell c, and if all component

machines that were OK at a computed the correct value for a, and if the replicated

machine is safe at c, then all component machines that are OK for c will have the

correct value for a available when they execute c. The proof of this lemma involves

a subsidiary lemma called stay correct repl that is the analog, for the replicated

machine, of the stay correct simple lemma discussed earlier. Like the earlier

lemma, this one is proved by induction, but requires a more complex induction

scheme than the previous case, because the induction must not proceed beyond the

point to which the component machine is known to be OK.3

A key step in the proof of stay correct is provided by the lemma

torch carried, which establishes that if cell a provides input to cell c, and if the

replicated machine is safe at c, then there is some component machine that is OK

at both a and c (and hence it \carries the torch" of correct values over from a to

c). The proof of this property is the one place where we depend on the fact that we

are using majority voting (and hence that the intersection of the sets of component

machines OK at a and OK at c must be nonempty).

The three modules sensor step (page 76), nonvoted step (page 78), and

voted step (page 80) establish the three cases for the inductive step in the proof

of the result (i.e., Consensus Theorem) in module correctness proof (page 83).

Unlike the traditional-style proof for the Consensus Theorem given in Section 2.3,

where strong induction over the schedule of cell executions is employed, the veri-

�cation in Ehdm uses Noetherian induction on the dependency structure recorded

in the relation G. This is the most natural induction scheme to employ in this

case and, as noted earlier, allows a stronger formulation of the theorem. Since the

statement of the Consensus Theorem has the form of an implication, we actually

3The type C of cells is implicitly de�ned to be in�nite by the module simple machine, since the
when and sched functions constrain it to be bijective with the naturals. The speci�cation would be

improved if the bijection were established with a �nite initial subset of the naturals. In this case,

the inductive proof of stay correct simple would also require revision.

36 Chapter 3. Speci�cation and Veri�cation in EHDM

employ a specialized form of Noetherian induction called mod induction that is tai-

lored to this case. The statement and proof of mod induction appear in the module

noetherian.

The three modules concerned with the establishing the inductive step for the

proof of the result each prove a lemma which states, for the case of the cell c

considered (i.e., a sensor cell, a nonvoted active-task cell, and a voted cell, respec-

tively), that if the replicated machine is safe at c, and correct at all cells a that

provide input to c, then the replicated machine will be correct at c. The proofs of

these results essentially follow from applications of the de�nitions of the functions

step, sstep, vote, rstep, rrun, and rrunto, but are somewhat tedious in Ehdm

since its theorem prover lacks a rewriter: numerous lemmas are required to break

the proof down into manageable pieces, each involving the application of just one

or two de�nitions.

Finally, the module outputs contains the speci�cation and proof for the formula

actuators correct, which corresponds to Corollary 1 in Section 2.3.

The complete veri�cation of the result requires the mechanized checking of 93

proofs (in addition, there are 9 automatically generated tcc proofs that fail; these

are supplanted by successful proofs among the 93) and takes about 7 minutes on

a Sun SPARCstation 2. The terse proof-chain analysis for the result is given in

Appendix C. The e�ort required to formally specify and verify the model in Ehdm

was between three and four man-weeks.

Chapter 4

Reconciliation with the LaRC

Model

In this chapter we explain the connection between our model and that developed by

Di Vito, Butler and Caldwell of NASA Langley Research Center (LaRC) [15]; for

brevity, we will generally refer to this as the \LaRC model."

A major di�erence between our model and the LaRC model is that we allocate

the elementary units of activity to a single-level structure of cells, whereas the LaRC

model considers a hierarchy of subframes, frames and cycles (in ascending order).

Thus, in our model, cells are drawn from a simple type C, whereas in the LaRC

model the units of activity (which we will call \LaRC-cells") are represented by

triples which we write as [p; f; s], where p is the cycle,1 f is the frame, and s is the

subframe. There are an inde�nite number of cycles, M frames, and frame f has

Mf subframes. If we let INk denote the �rst k natural numbers, then we require

p 2 IN; f 2 INM , and s 2 INMf
.2 The sequence of frames repeats to form cycles;

hence the properties of the LaRC model are primarily speci�ed in terms of the last

two components of the LaRC triples. Data
ow dependencies are represented by a

relation ! on these pairs, where

[f; s]! [g; t]

means that subframe s of frame f supplies input to subframe t of frame g. If

f > g _ (f = g ^ s � t)

1We use the variable p, suggesting period, rather than c, suggesting cycle, to avoid confusion

with c as a cell.
2This is an example of a dependent type: a type that depends on the value of a variable. Ehdm

has dependent typing, but lacks a syntax for stating the product type required here. A more

advanced speci�cation language under development at SRI permits this type de�nition to be stated

directly.

37

38 Chapter 4. Reconciliation with the LaRC Model

then the input comes from [f; s]'s execution in the previous cycle. The directed

graph associated with ! is called the task graph.

The second major di�erence between the LaRC model and ours is that we as-

sociate voting with individual cells, whereas the LaRC model treats voting as a

separate activity performed at the end of each complete frame. The LaRC model

employs a predicate V P (for Voting Pattern) to indicate what results are to be voted

in each frame: V P (f; s; g) is true just in case the result of subframe s in frame f is

voted at the end of frame g.

The association of votes with frames in the LaRC model renders it strictly weaker

than our model: we can model any system that can be represented within the LaRC

model, but we can also model systems (for example, those having votes elsewhere

than at the end of the frame) that cannot be represented within the LaRC model.

In order to substantiate the �rst of these claims (the second is self-evident), we now

indicate how the LaRC model can be represented within our formulation.

To do this, we introduce a new \voting" cell at the end of every frame in the

LaRC task graph and, to a �rst approximation, we add an arc to the task graph

between each (regular) cell and the voting cell of the frame that votes that cell's

value; we also replace those data
ow references to the value of the original cell made

by cells scheduled in frames later than one that votes its value by references to the

value of the voting cell. We say \in principle" because the process is complicated

when a value is voted by more than one frame. In this case, the voting cells of the

later frames vote on the previously voted value, not on the value of the original cell;

similarly, any references to the value always retrieve the most recently voted version.

(This is because there really is only one copy of the value).

Figure 4.1 gives a pictorial representation of the transformation just described.

In the �gure, vertical dashed lines indicate frame boundaries, and the left to right

order of cells on the page suggests their temporal order of execution. The top image

portrays an unvoted system with three frames and two subtasks in each frame; the

numbered arcs indicate the data
ow dependencies. The lower two images portray

the system after transformation to frame-based voting systems. The double circles

represent the new voting tasks and the unnumbered arcs that curve below the line

of circles represent the data
ow dependencies of these new voting tasks. The middle

image portrays \continuous voting" (see Section 4.1.1), in which all data are voted

every frame|hence each voting task has a link back to the previous voting task in

order to access the previously voted values of earlier tasks. Arcs corresponding to the

original data
ow references retain the same numbering scheme in this transformed

portrayal. Observe that arc number 7, for example, no longer reaches back to

a task several frames earlier, but only to the previous voting task. The bottom

image portrays the system after transformation to a frame-based voting system

using \cyclic voting" (see Section 4.1.2), in which each frame votes only the data

generated in that frame. Here, arc 7 must still reach back to the frame containing

39

No Voting

Cyclic Voting

Continuous Voting

7

6

5

4321

4,5

7

6321

7

6

5

43

2

1

Figure 4.1: Representation of Frame-Based Voting

40 Chapter 4. Reconciliation with the LaRC Model

the task of interest, but the data is acquired from the voting task of the frame

concerned.

Formal description of the transformation is complicated by the need to take care

of the details. We identify the cells of our model with the triples [p; f; s] of the

LaRC task graph, together with an initialization cell and the special voting cells;

we denote the initialization cell by cI , and the voting cell at the end of frame g of

cycle q by v(q;g). The basic data
ow connections ! of the LaRC task graph give

rise to edges in our graph G as follows:

([p; f; s]; [q; g; t])2 G i� [f; s]! [g; t] and

p = q ^

(
f < g

_ (f = g ^ s < t)

_

p = q � 1 ^

(
f > g

_ (f = g ^ s � t)

Cells that would otherwise be dependent on frame �1 instead make reference to the

initialization cell:

(cI ; [0; g; t]) 2 G i� [f; s]! [g; t]^ (f > g _ (f = g ^ s � t)):

The execution schedule for the LaRC model is implicit in the frame structure:

all the subframes for frame 0 are executed in order, then those for frame 1, and

so until the last subframe of frame M � 1, at which point a new cycle starts over

at subframe 0 of frame 0. If we let K(f) =
Pf�1

g=0 Mg denote the total number of

subframes in the �rst f frames of the task graph, then we require

when(cI) = 0;

when([p; f; s]) = p� (K(M) +M) + (K(f) + f) + s+ 1

and

when(v(q;g)) = q � (K(M) +M) + (K(g) + g) +Mg + 1:

We de�ne orderings > and � over (cycle; frame) pairs based on their position in

the execution sequence:

(p; f) > (q; g) if (p > q)_ (p = q ^ f > g); and

(p; f) � (q; g) if (p > q) _ (p = q ^ f � g):

We also use the inverse relations < and � whenever convenient and extend the

relations to voted cells by the convention

v(q;g) � v(r;h) i� (q; g)� (r; h):

4.1. Speci�c Voting Patterns 41

A voting cell v(q;g) is a candidate voting cell for ordinary cell [p; f; s] if V P (f; s; g),

and either q = p ^ g � f or q = p+ 1 ^ g < f ; the candidate cell that is least with

respect to the � ordering is the primary voting cell for [p; f; s], the others are

secondary voting cells for [p; f; s].

An arc ([p; f; s]; v(q;g)) is added to G when v(q;g) is the primary voting cell for

[p; f; s]. An arc (v(q;g); v(r;h)) is added to G when v(r;h) is a secondary voting cell for

[p; f; s], and v(q;g) is the largest candidate voting cell for [p; f; s] with respect to the

� ordering such that (q; g) < (r; h). Finally, we replace arcs ([p; f; s]; [q; g; t]) 2 G,

by arcs (v(r;h); [q; g; t]) where v(r;h) is the largest candidate voting cell for [p; f; s]

with respect to the � ordering such that (r; h) < (q; g).

We claim that the transformation just described will cast an instance of the

LaRC model into an instance of our model in a way that preserves its essential

properties. Despite its notational complexity, the transformation is really quite

simple: it \unrolls" the cyclic schedule of the LaRC model into
at structure that

we require, and it encodes the frame-based voting of the LaRC model in the voted

cells of our model.

4.1 Speci�c Voting Patterns

In the following sections we will derive results similar to those of [15, Section 14]

for speci�c voting patterns. We will use the general character of the transformation

between the LaRC model and ours described above, but will not undertake literal

translations of the LaRC Theorems. Instead, we will state what we consider to be

the main thrust of the LaRC Theorems directly in the terms of our model, and will

conduct our proofs within that context. In this way, we avoid the tedious labor of the

transformation, preserve the clarity of the presentation of each result, and increase

its generality of application. We claim, but do not prove, that if the statements of

the Theorems of [15, Section 14] are transformed in the way described above, then

the resulting \mapped" theorems will be special cases of those given below.

All we require to state our �rst two results is a notion of \frame." The idea is

that all cells belong to exactly one frame; the members of each frame are executed

sequentially; the last cell executed in each frame is a voted cell, and no other cells

are voted.

Thus we introduce the set

� F = f0; 1; : : : ; jf jg of frames , with mapping

� frame:C ! F , and equivalence relation

� � � C � C

where

a � c
def
= frame(a) = frame(c):

42 Chapter 4. Reconciliation with the LaRC Model

Thus frame(c) denotes the frame to which cell c belongs, and a � c indicates that

a and c both belong to the same frame. The requirement that all the members of

a frame are executed in sequence, with no members of other frames intervening, is

simply stated by the requirement that the derived function

� frame-sched :M ! F ,

given by

frame-sched(m)
def
= frame(sched(m));

should be monotonic increasing.

The �nal cell executed in a frame is the only voted cell in that frame:

CV
def
= fcj8a : a � c � when(a) � when(c)g:

It is convenient to let voted-cell(f) denote the voted cell for frame f .

Equipped with these de�nitions, we can state and prove results about increas-

ingly less restricted frame-based voting patterns.

4.1.1 Continuous Voting

The idea here is that the entire state of the replicated machine is voted every frame.

Thus, any cell that requires a value from an earlier frame need only refer to the

voting cell of the immediately preceding frame. Hence, our formalization is:

De�nition 1 (Continuous Voting) A replicated machine performs continuous

voting if:

(a; c) 2 G � a � c_ a = voted-cell(frame(c)� 1):

We have

Theorem 2 If a majority of machines is working throughout each consecutive pair

of frames, then the replicated machine is safe under continuous voting.

Proof: For any cell c, we need to ensure that a majority of component machines

are working throughout the period from committed-to(c) to when(c). The de�nition

of continuous voting ensures

when(voted-cell(frame(c)� 1)) � committed-to(c)

and

when(c) � when(voted-cell(frame(c))):

Hence, the requirement that a majority of machines are working throughout each

consecutive pair of frames is su�cient to ensure that the replicated machine is safe.

2

4.1. Speci�c Voting Patterns 43

4.1.2 Cyclic Voting

The idea here is that cells in frame f never refer to cells from frames earlier than

f�e, where e is a parameter to the design. Further, when cells make \out of frame"

references, it is only to voted cells.

De�nition 2 (Cyclic Voting) A replicated machine performs cyclic voting with

period e if:

(a; c) 2 G � a � c _ (a = voted-cell(frame(c)� k) ^ 1 � k � e):

(Obviously, there is also a well-formedness condition: frame(c) � k � 0.) Notice

that cyclic voting reduces to continuous voting when e = 1.

Theorem 3 If a majority of machines are working throughout each sequence of e+1

consecutive frames, then the replicated machine is safe under cyclic voting.

Proof: For any cell c, we need to ensure that a majority of component machines

are working throughout the period from committed-to(c) to when(c). The de�nition

of cyclic voting ensures

when(voted-cell(frame(c)� e)) � committed-to(c)

and

when(c) � when(voted-cell(frame(c))):

Hence, the requirement that a majority of machines are working throughout each

consecutive sequence of e + 1 of frames is su�cient to ensure that the replicated

machine is safe. 2

4.1.3 Optimal Voting

In this section, we examine conditions that allow a replicated machine to vote as

little data as possible, and as seldom as possible, yet still be able to recover from

transient failures in a �xed amount of time.

The general condition is very simple to state, but not very interesting:

Lemma 1 If there exists a constant B such that

8c : when(voted-cell(frame(c)� B)) � committed-to(c);

and a majority of machines are working throughout each sequence of B + 1 consec-

utive frames, then the replicated machine is safe.

44 Chapter 4. Reconciliation with the LaRC Model

Proof: This result follows by the same argument used in Theorem 3. 2

The conditions become more interesting when we consider cyclic schedules. It

is natural and convenient to think of cyclic schedules as generated by repeatedly

\unrolling" a more basic schedule for a single cycle. We assume such basic schedules

to be composed of \basic cells" of the form [f; s] where f is the frame, and s the

subframe. A relation ! de�nes the data
ow relationships among the basic cells:

[f; s]! [g; t] means that subframe s of frame g provides input to subframe t of frame

g. Cells are executed in order by frames, and in subframe order within frames. As

before, we assume there are M frames.

So far, this model is the same as the LaRC model [15]; a di�erence is that here

we allow arbitrary basic cells to be designated as voted cells, whereas the LaRC

model considers voting to take place at the end of each frame and indicates that

cell [f; s] is voted in frame n by V P (f; s; n). As explained at the beginning of this

chapter, there is a straightforward transformation from the standard LaRC model

to the variant used here.

The frame length of a step [f; s]! [g; t] is de�ned by

0 if f = g ^ s < t;

M if f = g ^ s � t;

g � f if f < g; and

M + (g � f) if f > g

A path in the basic schedule is a sequence of cells

< [f; s]; [g; t]; : : : ; [h; u]>

such that

[f; s]! [g; t]! � � � ! [h; u]:

The frame length of a path is the sum of the frame lengths of its individual steps.

We \unroll" the basic model to yield cells of the form [p; f; s] where p is the

cycle, and f and s are the frame and subframe as before. The graph G comprises

pairs of cells ([p; f; s]; [q; g; t]) such that [f; s]! [g; t] in the basic model and

p = q if (f < g)_ (f = g ^ s < t)

p = q � 1 if (f > g)_ (f = g ^ s � t)

A cell [p; f; s] is voted if [f; s] is designated as a voted cell in the basic schedule;

[p; f; s] is a sensor cell if it has indegree zero in G (i.e., if there is no basic cell [g; t]

such that [g; t]! [f; s]).

The frame-time of a cell is its position in the execution sequence:

frame-time([p; f; s]) = p�M + f ;

4.1. Speci�c Voting Patterns 45

the frame length of an arc ([p; f; s]; [q; g; t]) in the graph G is de�ned to be

frame-time([q; g; t])� frame-time([p; f; s]):

Notice that the construction ensures that this value is nonnegative, and that it equals

the frame length of [f; s] ! [g; t] in the basic schedule. A path in the (unrolled)

schedule is a sequence of cells

< [p; f; s]; [q; g; t]; : : : ; [r; h; u]>

such that each consecutive pair of cells are connected by an arc in the graph G. The

frame length of this path is de�ned as

frame-time([r; h; u])� frame-time([p; f; s]):

It is easy to see that this equals the sum of the frame lengths of the individual arcs,

and that it also equals the frame length of the basic path

< [f; s]; [g; t] : : : [h; u] > :

A path

< [p; f; s]; [q; g; t]; : : : ; [r; h; u]>

is a commitment path if

� The cell [p, f, s] is either a sensor cell or a voted cell, and

� No other cells in the sequence are voted, except possibly the last.

Then we have

Lemma 2 If there exists a bound B on the frame-length of any commitment-path,

and a majority of machines are working throughout each sequence of B + 1 consec-

utive frames, then the replicated machine is safe.

Proof: If

< [p; f; s]; [q; g; t]; : : : ; [r; h; u]>

is a commitment-path, then

[p; f; s] 2 support([r; h; u]):

If no commitment-path has frame length longer than B, it follows that

when(voted-cell(frame([r; h; u]�B))) � committed-to([r; h; u])

and the result follows by the previous lemma. 2

The existence of the bound B is determined by the presence of vote-free cycles

(loops) in the basic task graph:

46 Chapter 4. Reconciliation with the LaRC Model

Lemma 3 There exists a bound B on the frame-length of any commitment-path if

and only if all cycles in the basic task graph contain at least one voted cell.

Proof: Suppose there is no such bound B. Then there are commitment-paths of

arbitrary frame lengths|and therefore of arbitrary lengths, since the frame length

of any individual step is �xed. Since the number of basic cells is �xed and �nite, it

follows that there must exist a commitment-path of the form

< : : : [p; f; s] : : : [q; f; s] : : : >

in which the components of some unvoted basic cell [f; s] are repeated and no voted

cells appear in between. The construction of the graph G is such that this can only

happen if there is a cycle

[f; s]! � � � ! [f; s]

in the task graph comprising only unvoted cells.

Suppose, on the other hand, that the basic task graph contains a cycle

[f; s]! � � � ! [f; s]

comprising only unvoted cells. Then a commitment-path can be constructed con-

taining a segment derived from enough iterations of this basic cycle that the frame-

length exceeds any �xed bound B. 2

Combining these lemmas, we obtain

Theorem 4 Recovery from transient faults is possible if and only if there are no

vote-free cycles in the basic task graph. Further, if all paths of the form

[f; s]! [g; t]! � � � ! [h; u];

where at most the �rst and last elements are voted, have path lengths no longer than

B, and if a majority of machines are working throughout each sequence of B + 1

consecutive frames, then the replicated machine is safe.

Proof: Combine the preceding three lemmas. 2

Chapter 5

Discussion and Conclusions

We begin with a consideration of possible extensions to this work. These extensions

fall into four categories, listed in order of increasing complexity:

� Proof of additional properties within the current model,

� Modi�cation of the current model in order to enhance its abstractness,

� Development of more concrete models on top of the current model, and

� Signi�cant extensions to the model in order to encompass a wider class of

systems.

We consider each of these categories in turn.

A topic where additional proofs would expose the underlying requirements more

clearly concerns the retention of stored values. The current model treats the system

state as a function recording the values of all cells encountered during the entire

lifetime of the system. Obviously this is not how we expect the system to be imple-

mented. It is intuitively clear that the only cells whose values need to be retained

are those which have been computed but not yet used|that is, the value of cell c

needs to be retained only for the interval from when(c) tomaxfwhen(a)j(c; a) 2 Gg.

This can be speci�ed by modifying the de�nition of the basic function step.

Currently, we have

step(�; c)
def
= � with [c := if c 2 CS then sensor(c)(when(c)) else task(c)(�)]:

This de�nition can be replaced by two axioms specifying a modi�ed function step0:

step0(�; c)(c) = if c 2 CS then sensor(c)(when(c)) else task(c)(�)

and

8a; b : (a; b) 2 G ^ when(a) < when(c) < when(b) � step0(�; c)(a) = �(a):

47

48 Chapter 5. Discussion and Conclusions

To establish that step0 is an adequate replacement for step we need to prove that

the actuator commands are the same in both cases.

There are two ways to carry out this proof. One would establish a variant

speci�cation for simple machine using step0 instead of step, and would prove that

actuator outputs are the same in both cases|that is, it would verify a theorem

of the form runto(c)(c) = runto0(c)(c). This approach would leave the existing

speci�cation and veri�cation unchanged but would require a fairly extensive new

veri�cation that would mirror, in many respects, the veri�cation already performed.

The other approach would modify repl machine to use step0 instead of step and

would then carry this additional complication along in the proof of fault masking.

This approach is probably the simplest, since the de�nition of step is used only �ve

times in proofs concerning the replicated machine.

A topic where increased abstraction in the current model and veri�cation would

expose underlying requirements more clearly is the choice of voting strategy. The

current model is �rmly based on majority voting, but other strategies such as plural-

ity voting have attractions. As long as the working machines constitute an absolute

majority, plurality voting exhibits the same behavior as majority voting. If the

working machines should fail to form an absolute majority, however, the majority-

voted system will break down, whereas a plurality-voted system may break down

or may not, depending on whether enough of the failed machines agree on a com-

mon, wrong value to win the plurality vote. There seems to be no way to measure

the likelihood of this latter event, nor any sound way to engineer a system so that

failed machines are unlikely to agree, and so we do not advocate the use of plurality

voting as a way to enhance the claimed reliability of the system. There seems little

harm, however, and possibly some value, in using voting strategies that are more

robust than strict majority|so that there is at least some chance the system may

continue to work even after an explosion, or other catastrophic event, has rendered

10�9 irrelevant.1

These considerations provide the motivation for a more careful examination of

the voting and fault-model assumptions required for the Consensus Theorem to

hold. There are two places in the present development where the properties of

strict majority voting are employed. One, noted in Chapter 3, is in the proof of

torch carried, the other is in the proof of vote lemma in module voted step.

It would be very worthwhile to revisit these proofs and to determine a minimal

characterization of the properties actually required of the voting function in order

for the fault-masking properties to be retained. (Majority is a strict requirement for

the torch carried property, but there seem to be other ways to conduct the part of

the proof in which this property is used.) The ability to conduct such investigations

is one of the bene�ts of a truly formal development: the axiomatic and de�nitional

1Paul Miner of NASA LaRC �rst drew these considerations to our attention.

49

basis of the development is known precisely, and the e�ect of controlled variations

can be rigorously explored.2

A prime candidate for a more concrete model to be constructed on top of the one

developed here is that of Di Vito, Butler and Caldwell. As indicated in Chapter 4,

the main results proved for that model can also be derived from ours; it would be

interesting to formally verify those derivations. At a later stage in this program of

work, when an actual design for a reliable computing platform for DFCS has been

developed, it will be valuable to attempt to instantiate our model for that design.

The characteristics of some potential system designs cannot be seen as instan-

tiations of our model: it will be necessary to signi�cantly revise and extend the

model in order to accommodate such designs. Among the revisions and extensions

that would be most illuminating are those that break the lock-step synchronization

of task executions in the component machines. One extension would still require

the same workload for each component machine, but would allow them to execute

di�erent schedules. Obviously there are constraints that require a notion of \consis-

tency" to be satis�ed among schedules|they must synchronize for votes and must

not deadlock, for example. The practical bene�t of allowing di�erent schedules on

di�erent channels is that simultaneous transient failures of several channels, such as

a lightning strike might induce, will be less likely to all a�ect the activations of a

single task; instead, the damage will be shared among several di�erent tasks, and

all may still be executed by a majority of working processors.

Another extension would introduce di�erent workloads for di�erent machines.

This allows di�erent quantities of replication for di�erent activities and permits

better utilization of resources. For example, one really critical activity may run

on all processors, another less critical one may run on only three, while another,

presumably unimportant, task may run on but a single machine.

So much for future extensions; we now turn to a consideration of the signi�cance

of the work actually performed. The work described is just one of the �rst steps in

a much larger program and it would be premature to evaluate the overall program

at this stage. We can, however, ask what the model developed here contributes to

a science of DFCS design, and we can ask what further value is contributed by its

formal speci�cation and veri�cation.

Clearly, our model addresses only a small fragment|redundancy management|

of the overall problem of DFCS design, and is a highly abstracted representation of

2It may seem moot to explore the circumstances under which a Consensus Theorem can hold with

less than N+1

2
working channels when the underlying Byzantine fault tolerant sensor distribution

and clock synchronization algorithms require 2N+1

3
working channels. Our response is that it would

be worthwhile to investigate the behavior of these Byzantine fault-tolerant algorithms when fewer

than the required channels are available. It should be possible to tolerate nonByzantine failures
with only N+1

2
working channels, but it is unknown whether the standard Byzantine algorithms

do so. There has, however, been some investigation of algorithms that tolerate multiple failure

modes [44,61].

50 Chapter 5. Discussion and Conclusions

that fragment. Small though that fragment may be, however, the evidence cited in

Section 1.2 suggests that it is one of the most crucial problems; if managed poorly,

redundancy can reduce, rather than enhance, the overall reliability of a DFCS.

Recall the summary of Mackall [38, pp. 40{41] quoted on page 8, and which reads

in part:

\: : :quali�cation of such a complex system as this, to some given level

of reliability, is di�cult : : : [because] the number of test conditions be-

comes so large that conventional testing methods would require a decade

for completion. The fault-tolerant design can also a�ect overall sys-

tem reliability by being made too complex and by adding characteristics

which are random in nature, creating an untestable design.

\: : :reducing complexity appears to be more of an art than a science

and requires an experience base not yet available. If the complexity is

required, a method to make system designs more understandable, more

visible, is needed."

The purpose of the work described here (and of the larger program) is precisely to

address these pleas for testable designs, purged of \random characteristics," and

which are more \understandable, more visible."

We contend that our model shows that certain principles of design|Byzantine

fault tolerant distribution of sensor samples, loosely synchronized execution, ma-

jority voting of all actuator outputs, and periodic majority voting of internal

state data|provide predictable behavior that masks faults and provides transient-

recovery. These principles of design are encoded in the axioms and de�nitions of

our model; the conclusion is derived by mathematical reasoning from that basis.

Other models have been devised that address similar problems. A general

method, known rather misleadingly as the \state-machine approach" for construct-

ing reliable systems from unreliable components that periodically vote their results

was developed by Lamport in a series of classic papers [31{33] (see also Schneider's

tutorial [57]). The development here can be seen as a modi�cation of Lamport's

\state-machine" approach to the case where voting is performed intermittently.

The model most similar to our is, of course, that of Di Vito, Butler and Cald-

well [16,15]. The formal connection between the two models was discussed in Chap-

ter 4; here we consider less tangible issues|style, abstractness, and the in
uence of

formal veri�cation.

A maxim usually attributed to Einstein holds that a theory should be \as simple

as possible|but no simpler." In our domain, simplicity is closely related to the ab-

stractness of the model considered: the advantage of abstraction is that it reduces

a problem to its simplest form and exposes its essential properties to scrutiny, un-

cluttered by extraneous matter; the danger is that too much is left out, so that the

model fails to capture those aspects of reality that are of interest. When formal

51

veri�cation is undertaken, abstraction has economic, as well as philosophical con-

sequences: it will generally be easier, and hence require less resources, to verify an

abstract model than a more concrete one. Furthermore, the abstract model should

have wider applicability, and hence the cost of its veri�cation can be amortized over

more instantiations. Of course, the cost of one instantiation must be borne in order

to reach the level of detail considered in the more concrete model.

Our model is considerably more abstract than that of Di Vito, Butler and Cald-

well; we explained the reasons for our choices in Section 1.3.1 and considered the

reconciliation between the two models in Chapter 4. For the purpose of formal ver-

i�cation, we consider our model to have distinct advantages: it has been subjected,

essentially without change, to formal speci�cation and mechanical proof checking

in Ehdm, whereas we believe that direct veri�cation of the LaRC model would be

a considerable challenge. Whether the added concreteness of the LaRC model ren-

ders it a more e�ective speci�cation for human review is something we leave to our

readers to decide.

The remaining question we consider is whether formal speci�cation and me-

chanical proof checking added anything of value to the quasi-formal description and

proof presented in Chapter 2. The �rst thing to note is that the description and

proof given in Chapter 2 were heavily in
uenced by the formal veri�cation|both

before and after the latter was performed. It was in
uenced even before the formal

veri�cation was attempted because the model was constructed with formal speci�-

cation and veri�cation (in Ehdm) in mind. Hence, it is expressed directly in terms

of (higher-order) functions; the LaRC model, on the other hand, uses vectors, se-

quences, sets, and iterated conjunction operators. These can all be expressed in

terms of (higher-order) functions and we would not hesitate to use them where they

contribute to clarity|on the other hand, we generally prefer to do without these

constructs when a comparably simple speci�cation can be found that is expressed

directly in terms of functions. After the formal veri�cation had been performed, we

revised some of the de�nitions and the proof of Chapter 2 in order to bring them

more closely into line with the corresponding Ehdm versions.

There is one improvement derived from the formal veri�cation that we did not

retro�t to development of Chapter 2: this is a stronger formulation of the main

Consensus Theorem. The Consensus Theorem is stated as

If safe(c), then

8j 2 R : OK(j)(c)� good-value(j; c):

where

safe(c)
def
= (8a : when(a) � when(c) �MOK(a)):

52 Chapter 5. Discussion and Conclusions

In the Ehdm veri�cation, the Theorem was strengthened by giving a weaker

(recursive) de�nition for safe:

safe(c)
def
= MOK(c)^ (8a : (a; c) 2 G � safe(a)):

The stronger theorem requires only that the replicated machine is MOK for all

those cells that transitively contribute input to cell c; the weaker form requires it

be MOK for all cells executed prior to c.

Obviously, the stronger theorem could have been stated and proved in the quasi-

formal development just as well as the weaker one. The signi�cant point, however, is

that it was the weaker formulation, and correspondingly a proof by simple induction,

that arose most naturally in the quasi-formal development. In formal veri�cation,

the familiar convenience of simple induction is less of a driving force, and we were

led to contemplate the stronger theorem, which requires a more di�cult Noetherian

induction.

The main bene�t that we see accruing from the mechanically checked veri�cation

is the precision with which the underlying assumptions are now known. Formally,

this basis consists of 18 axioms (of which only 11 are directly concerned with the

model, while the remaining 7 deal with supporting concepts such as cardinality), and

15 de�nitions (which provide only conservative extensions in Ehdm). Informally, we

have acquired a much better appreciation of the issues concerning the retention of

stored values, and of the way in which fault masking is dependent on the properties

of majority (as opposed to other kinds of) voting. As described above, we are now

in a position to investigate these issues formally.

In future work, we hope to explore these issues, and also to extend our formal

speci�cation and veri�cation toward the behavior of a realistic operating system

that will implement the fault-masking techniques modeled here. The next step will

be to combine the model used here with that for clock synchronization [53], in order

to consider the more realistic case of replicated computers that are synchronized

only within some bound �, and in which computation and communication take a

certain amount of time.

Acknowledgements

We are grateful to Ricky Butler of NASA Langley Research Center for posing the

challenge of applying formal methods to aspects of digital
ight control systems, and

for structuring the overall problem into manageable pieces. Our treatment of the

problem tackled in this report owes much to discussions with Ben Di Vito, and to

his model for fault masking and transient recovery. Jim Caldwell provided valuable

assistance and encouragement in the �rst stage of the formal veri�cation reported

here.

References

[1] Anonymous. Reprogramming capability proves key to extending Voyager 2's

journey. Aviation Week and Space Technology, page 72, August 7, 1989.

[2] Anonymous. French report details 1988 crash of A320 following air show
yby.

Aviation Week and Space Technology, pages 107{108, 78{79, 99{103, 98{99,

60{64, 90{93, and 90{93, June 4 to July 30, 1990. (Continued over seven issues

of the magazine).

[3] W.R. Bevier and W.D. Young. Machine-checked proofs of a Byzantine agree-

ment algorithm. Technical Report 55, Computational Logic Incorporated,

Austin, TX, June 1990.

[4] W.R. Bevier and W.D. Young. The design and proof of correctness of a fault-

tolerant circuit. In 2nd. International Working Conference on Dependable Com-

puting for Critical Applications, pages 107{114, Tucson, AZ, February 1991.

IFIP WG. 10.4.

[5] Robert S. Boyer and J Strother Moore. MJRTY|a fast majority vote algo-

rithm. Technical Report 32, Institute for Computing Science, University of

Texas, Austin TX, February 1981.

[6] Ricky W. Butler. A survey of provably correct fault-tolerant clock synchro-

nization techniques. NASA Technical Memorandum 100553, NASA Langley

Research Center, February 1988.

[7] Ricky W. Butler and Sally C. Johnson. The art of fault-tolerant system reliabil-

ity modeling. NASA Technical Memorandum 102623, NASA Langley Research

Center, Hampton, VA, March 1990.

[8] B. Chandraskeran and W.F. Punch III. Data validation during diagnosis, a

step beyond traditional sensor validation. In Proceedings, AAAI 87 (Volume

2), pages 778{782, Seattle, WA, July 1987.

53

54 References

[9] Ehdm Speci�cation and Veri�cation System Version 4.1|User's Guide. Com-

puter Science Laboratory, SRI International, Menlo Park, CA, November 1988.

See [11] for the updates to Version 5.2.

[10] Ehdm Speci�cation and Veri�cation System Version 5.0|Description of the

Ehdm Speci�cation Language. Computer Science Laboratory, SRI Interna-

tional, Menlo Park, CA, January 1990. See [11] for the updates to Version

5.2.

[11] Ehdm Speci�cation and Veri�cation System Version 5.2|Supplement to User's

and Language Manuals. Computer Science Laboratory, SRI International,

Menlo Park, CA, March 1991. Current version number is 5.2.0.

[12] Flaviu Cristian. Probabilistic clock synchronization. Technical Report RJ 6432,

IBM Almaden Research Center, San Jose, CA, September 1988.

[13] James C. Deckert, Mukund N. Desai, John J. Deyst, and Alan S. Willsky. F-8

DFBW sensor failure identi�cation using analytic redundancy. IEEE Transac-

tions on Automatic Control, AC-22(5):795{803, October 1977.

[14] John C. DeLaat and Walter C. Merrill. A real time microcomputer implemen-

tation of sensor failure detection for turbofan engines. IEEE Control Systems

Magazine, 10(4):29{37, June 1990.

[15] Ben L. Di Vito, Ricky W. Butler, and James L. Caldwell. Formal design and

veri�cation of a reliable computing platform for real-time control. NASA Tech-

nical Memorandum 102716, NASA Langley Research Center, Hampton, VA,

October 1990.

[16] Ben L. Di Vito, Ricky W. Butler, and James L. Caldwell. High level design proof

of a reliable computing platform. In 2nd. International Working Conference on

Dependable Computing for Critical Applications, pages 124{136, Tucson, AZ,

February 1991. IFIP WG. 10.4.

[17] Michael A. Dornheim. X-31
ight tests to explore combat agility to 70 deg.

AOA. Aviation Week and Space Technology, pages 38{41, March 11, 1991.

[18] Carl S. Droste and James E. Walker. The General Dynamics Case Study on

the F16 Fly-by-Wire Flight Control System. AIAA Professional Study Series.

American Institute of Aeronautics and Astronautics. Undated.

[19] System Design Analysis. Federal Aviation Administration, September 7, 1982.

Advisory Circular 25.1309-1.

[20] Digital Systems Validation Handbook{Volume II. Federal Aviation Administra-

tion Technical Center, Atlantic City, NJ, February 1989. DOT/FAA/CT-88/10.

References 55

[21] John R. Garman. The \bug" heard 'round the world. ACM Software Engineer-

ing Notes, 6(5):3{10, October 1981.

[22] Richard E. Harper and Jaynarayan H. Lala. Fault-tolerant parallel processor.

AIAA Journal of Guidance, Control, and Dynamics, 14(3):554{563, May-June

1991.

[23] A.H. In�s and W.R. Moore. Economic approach to fault-tolerant synchroniza-

tion. IEE Proceedings, Part E, 135(2):82{86, March 1988.

[24] Rolf Isermann. Process fault detection based on modeling and estimation

methods|a survey. Automatica, 20(4):387{404, July 1984.

[25] Stephen D. Ishmael, Victoria A. Regenie, and Dale A. Mackall. Design implica-

tions from AFTI/F16
ight test. NASA Technical Memorandum 86026, NASA

Ames Research Center, Dryden Flight Research Facility, Edwards, CA, 1984.

[26] Myron Kayton. Avionics for manned spacecraft. IEEE Transactions on

Aerospace and Electronic Systems, 25(6):786{827, November 1989.

[27] R.M. Kieckhafer, C.J. Walter, A.M. Finn, and P.M. Thambidurai. The MAFT

architecture for distributed fault tolerance. IEEE Transactions on Computers,

37(4):398{405, April 1988.

[28] H. Kopetz, H. Kantz, G. Gr�unsteidl, P. Puschner, and J. Reisinger. Tolerating

transient faults in MARS. In Digest of Papers, FTCS 20, pages 466{473,

Newcastle upon Tyne, UK, June 1990. IEEE Computer Society.

[29] Herman Kopetz and Wilhelm Ochsenreiter. Clock synchronization in dis-

tributed real-time systems. IEEE Transactions on Computers, C-36(8):933{

940, August 1987.

[30] Hermann Kopetz et al. Distributed fault-tolerant real-time systems: The Mars

approach. IEEE Micro, 9(1):25{40, February 1989.

[31] L. Lamport. The implementation of reliable distributed multiprocess systems.

Computer Networks, 2:95{114, 1978.

[32] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558{565, July 1978.

[33] L. Lamport. Using time instead of timeout for fault-tolerant distributed sys-

tems. ACM TOPLAS, 6(2):254{280, April 1984.

[34] L. Lamport and P.M. Melliar-Smith. Synchronizing clocks in the presence of

faults. Journal of the ACM, 32(1):52{78, January 1985.

56 References

[35] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals

problem. ACM TOPLAS, 4(3):382{401, July 1982.

[36] David Learmount. A320 certi�cation: the quiet revolution. Flight International,

pages 21{24, February 27, 1988.

[37] Dale A. Mackall. AFTI/F-16 digital
ight control system experience. In Gary P.

Beasley, editor, NASA Aircraft Controls Research 1983, pages 469{487. NASA

Conference Publication 2296, 1984. Proceedings of workshop held at NASA

Langley Research Center, October 25{27, 1983.

[38] Dale A. Mackall. Development and
ight test experiences with a
ight-crucial

digital control system. NASA Technical Paper 2857, NASA Ames Research

Center, Dryden Flight Research Facility, Edwards, CA, 1988.

[39] Dale A. Mackall and James G. Allen. A knowledge-based system de-

sign/information tool for aircraft
ight control systems. In AIAA Computers

in Aerospace Conference VII, pages 110{125, Monterey, CA, October 1989.

Collection of Technical Papers, Part 1.

[40] G.K. Manacher. Production and stabilization of real-time task schedules. Jour-

nal of the ACM, 14(3):439{465, July 1967.

[41] Keith Marzullo. Tolerating failures of continuous-valued sendors. ACM Trans-

actions on Computer Systems, 8(4):284{304, November 1990.

[42] Richard Mercadante. Control recon�gurable combat aircraft development.

Technical Report AFWAL-TR-88-3118, Flight Dynamics Laboratory, Wright

Research and Development Center, Wright-Patterson AFB, OH, December

1989. 2 Volumes. US distribution only.

[43] Walter C. Merrill, John C. DeLaat, and Mahmood Abdelwahab. Turbofan

engine demonstration of sensor failure detection. AIAA Journal of Guidance,

Control, and Dynamics, 14(2):337{349, March-April 1991.

[44] Fred J. Meyer and Dhiraj K. Pradhan. Consensus with dual failure modes.

IEEE Transactions on Parallel and Distributed Systems, 2(2):214{222, April

1991.

[45] W.D. Morse and K.A. Ossman. Model following recon�gurable
ight control

system for the AFTI-F16. AIAA Journal of Guidance, Control, and Dynamics,

13(6):969{976, November-December 1990.

[46] L. Moser, P.M. Melliar-Smith, and R. Schwartz. Design veri�cation of SIFT.

Contractor Report 4097, NASA Langley Research Center, Hampton, VA,

September 1987.

References 57

[47] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of

faults. Journal of the ACM, 27(2):228{234, April 1980.

[48] Didier Puyplat. A320: First of the computer-age aircraft. Aerospace America,

29(5):28{30, May 1991.

[49] Software Considerations in Airborne Systems and Equipment Certi�cation. Ra-

dio Technical Commission for Aeronautics, Washington, DC, March 1985. DO-

178A.

[50] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler. Fault-

tolerant clock synchronization in distributed systems. IEEE Computer,

23(10):33{42, October 1990.

[51] Asok Ray and Rogelio Luck. An introduction to sensor signal validation in

redundant measurement systems. IEEE Control Systems Magazine, 11(2):44{

49, February 1991.

[52] P. Richards. Timing properties of multiprocessor systems. Technical Report

TDB60-27, Tech. Operations Inc., Burlington, MA, August 1960.

[53] John Rushby and Friedrich von Henke. Formal veri�cation of the interactive

convergence clock synchronization algorithm using Ehdm. Technical Report

SRI-CSL-89-3, Computer Science Laboratory, SRI International, Menlo Park,

CA, February 1989. Also available as NASA Contractor Report 4239.

[54] John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formal

speci�cation and veri�cation using Ehdm. Technical Report SRI-CSL-91-2,

Computer Science Laboratory, SRI International, Menlo Park, CA, February

1991.

[55] Ethan A. Scarl, John R. Jamieson, and Carl I. Delaune. Diagnosis and sensor

validation through knowledge of structure and function. IEEE Transactions on

Systems, Man, and Cybernetics, SMC-17(3):360{368, May/June 1987.

[56] Fred B. Schneider. Understanding protocols for Byzantine clock synchroniza-

tion. Technical Report 87-859, Department of Computer Science, Cornell Uni-

versity, Ithaca, NY, August 1987.

[57] Fred B. Schneider. Implementing fault-tolerant services using the state ma-

chine approach: A tutorial. ACM Computing Surveys, 22(4):299{319, Decem-

ber 1990.

[58] Natarajan Shankar. Mechanical veri�cation of a schematic protocol for Byzan-

tine fault-tolerant clock synchronization. Technical Report SRI-CSL-91-4,

58 References

Computer Science Laboratory, SRI International, Menlo Park, CA, January

1991. Also forthcoming NASA Contractor Report.

[59] Cary R. Spitzer. Digital Avionics Systems. Prentice Hall, Englewood Cli�s,

NJ, 1987.

[60] T.K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the

ACM, 34(3):626{645, July 1987.

[61] Philip Thambidurai and You-Keun Park. Interactive consistency with multiple

failure modes. In Proc. 7th Symposium on Reliable Distributed System, pages

93{100, Columbus, OH, October 1988. IEEE Computer Society.

[62] P. Traverse. Dependability of digital computers on board airplanes. In Interna-

tional Working Conference on Dependable Computing for Critical Applications,

pages 53{60, Santa Barbara, CA, August 1989. IFIP WG. 10.4.

[63] Friedrich von Henke, Natarajan Shankar, and John Rushby. Formal Semantics

of Ehdm. Computer Science Laboratory, SRI International, Menlo Park, CA,

January 1990. This document describes Ehdm Version 5.0; see [11] for informal

descriptions of the changes in Version 5.2.

[64] John H. Wensley et al. SIFT: design and analysis of a fault-tolerant computer

for aircraft control. Proceedings of the IEEE, 66(10):1240{1255, October 1978.

[65] John Williams. Built to last. Astronomy Magazine, 18(12):36{41, December

1990.

[66] Alan S. Willsky. A survey of methods for failure detection in dynamic systems.

Automatica, 12(6):601{611, November 1976.

Appendix A

LATEX-printed Speci�cation Listings

The following speci�cation listings were formatted and converted to math-

ematical notation automatically using the Ehdm LaTEX-printer.

simple machine: Module

Exporting all

Theory

n: Var nat

M: Type is nat

m: Var M

C, D: Type

a; c: Var C

cell types: Type = (sensor cell; actuator cell; task cell)

cell type: function[C ! cell types]

CS : Type from C with (� c : cell type(c) = sensor cell)

CA : Type from C with (� c : cell type(c) =

CT : Type from C with (� c : cell type(c) 6=

start cell: CS

arb task: CT

arb actuator: CA

(?1; ?2) 2 G: function[C;C ! bool]

sensor ax: Axiom (9 a : (a; c) 2 G), :(c in

sched: function[M ! C]

when: function[C !M]

Gbar when: Axiom (a; c) 2 G � when(a) < w

sched when ax: Axiom (sched(m) = a), (m

dowhen pos: Axiom when(c) > 0

p; q: Var M

59

Appendix A. LaTEX-printed Speci�cation Listings

unique when: Lemma p 6= q � sched(p) 6= sched(q)

previous: function[C ! C] == (� c : sched(pred(when(c))))

sched when lemma: Lemma a = sched(when(a))

when sched lemma: Lemma m = when(sched(m))

dowhen previous: Lemma when(previous(c)) = pred(when(c))

state: Type is function[C ! D]

initial state: state

s; t: Var state

sensor fn: Type is function[M ! D]

sensor: function[CS ! sensor fn]

task fn: Type is function[state! D]

task: function[CT ! task fn]

dependency: Axiom

c in CT ^ (8 a : (a; c) 2 G � s(a) = t(a))

� task(c)(s) = task(c)(t)

step: function[state; C;M ! state] =

(� s; c;m : s

with [(c) :=

if c in CS then sensor(c)(m) else task(c)(s) end if])

identity: function[M ! nat] == (� m : m)

run: Recursive function[M ! state] =

(�m :

if m = 0 then initial state else step(run(m�1); sched(m);m) end if)

by identity

runto: function[C ! state] == (� c : run(when

Proof

sched when proof: Prove sched when lemma f

sched when ax fm when(a)g

when sched proof: Prove when sched lemma f

sched when ax fa sched(m)g

dowhen prev proof: Prove dowhen previous f

when sched lemma fm pred(when(c))g

unique when proof: Prove unique when from

when sched lemma fm pg, when sched le

End simple machine

Appendix A. LaTEX-printed Speci�cation Listings

simple machine tcc: Module

Using simple machine

Exporting all withsimple machine

Theory

m: Var naturalnumber

a: Var C

c: Var C

s: Var function[C ! D]

t: Var function[C ! D]

sensors TCC1: Formula (9 c : cell type(c) = sensor cell)

actuators TCC1: Formula (9 c : cell type(c) = actuator cell)

active tasks TCC1: Formula (9 c : cell type(c) 6= sensor cell)

dependency TCC1: Formula

(c in CT ^ (8 a : (a; c) 2 G � s(a) = t(a)))

� (cell type(c) 6= sensor cell)

step TCC1: Formula (c in CS) � (cell type(c) = sensor cell)

step TCC2: Formula (:(c in CS)) � (cell type(c) 6= sensor cell)

run TCC1: Formula (:(m = 0)) � (m� 1 � 0)

run TCC2: Formula (:(m = 0)) � identity(m) > identity(m� 1)

Proof

sensors TCC1 PROOF: Prove sensors TCC1

actuators TCC1 PROOF: Prove actuators TCC1

active tasks TCC1 PROOF: Prove active task

dependency TCC1 PROOF: Prove dependenc

step TCC1 PROOF: Prove step TCC1

step TCC2 PROOF: Prove step TCC2

run TCC1 PROOF: Prove run TCC1

run TCC2 PROOF: Prove run TCC2

End simple machine tcc

Appendix A. LaTEX-printed Speci�cation Listings

simple machine tcc proofs: Module

Proof

Using simple machine tcc

sensors TCC1 PROOF: Prove sensors TCC1 fc start cellg

active tasks TCC1 PROOF: Prove active tasks TCC1 fc arb taskg

from distinct cell types

actuators TCC1 PROOF: Prove actuators TCC1 fc arb actuatorg

End simple machine tcc proofs

noetherian: Module [dom: Type, <: function

Assuming

measure: Var function[dom! nat]

a; b: Var dom

well founded: Formula

(9measure : a < b � measure(a) < measure

Theory

p;A;B: Var function[dom! bool]

d; d1; d2: Var dom

general induction: Axiom

(8 d1 : (8 d2 : d2 < d1 � p(d2)) � p(d1)) � (

d3; d4: Var dom

mod induction: Theorem

(8 d3; d4 : d4 < d3 � A(d3) � A(d4))

^ (8 d1 : (8 d2 : d2 < d1 � (A(d1) ^B(

� (8 d : A(d) � B(d))

Proof

mod proof: Prove

mod induction fd1 d1@p1, d3 d1@p1,

from general induction fp (� d : A(d) �

End noetherian

Appendix A. LaTEX-printed Speci�cation Listings

natinduction: Module

Theory

i;m;m1; n: Var nat

p: Var function[nat! bool]

induction: Theorem (p(0) ^ (8 i : p(i) � p(i + 1))) � p(n)

induction m: Theorem

p(m) ^ (8 i : i � m ^ p(i) � p(i + 1)) � (8 n : n � m � p(n))

limited induction: Theorem

(m � m1 � p(m)) ^ (8 i : i � m ^ i < m1 ^ p(i) � p(i + 1))

� (8 n : n � m ^ n � m1 � p(n))

Proof

Using noetherian

prev: function[nat; nat! bool] == (� m; n : m + 1 = n)

instance: Module is noetherian[nat, prev]

x: Var nat

identity: function[nat! nat] == (� n : n)

discharge: Prove well founded fmeasure identityg

ind proof: Prove induction fi pred(d1@p1)g from

general induction fd n, d2 ig

ind m proof: Prove induction m fi i@p1 +mg from

induction

fp (� x : p@c(x+m)),

n if n � m then n �m else 0 end ifg

limited proof: Prove limited induction fi i

induction m fp (� x : x � m1 � p@c(x))g

End natinduction

Appendix A. LaTEX-printed Speci�cation Listings

natinduction tcc: Module

Using natinduction

Exporting all withnatinduction

Theory

m: Var naturalnumber

n: Var naturalnumber

ind m proof TCC1: Formula

(m � 0) ^ (n � 0) � (if n � m then n �m else 0 end if � 0)

Proof

ind m proof TCC1 PROOF: Prove ind m proof TCC1

End natinduction tcc

simple props: Module

Using simple machine; natinduction

Exporting withsimple machine

Theory

a; c: Var C

stay correct simple: Lemma

(a; c) 2 G � runto(previous(c))(a) = runto(a

simple sensor step lemma: Lemma

c in CS � runto(c)(c) = sensor(c)(when(c))

simple step lemma: Lemma

:(c in CS) � runto(c)(c) = task(c)(run(pred

Proof

m: Var M

indstep: Lemma run(m)(a) = runto(a)(a) � r

indstep proof: Prove indstep from

run fm m+ 1g,

step fs run(m), c sched(m+ 1), m

unique when fp when(a), q m + 1g,

sched when lemma

q: Var M

Appendix A. LaTEX-printed Speci�cation Listings

stay simple proof: Prove stay correct simple from

induction m

fp (� q : run(q)(a) = runto(a)(a)),

m when(a),

n when(previous(c))g,

indstep fm i@p1g,

sched when lemma fa previous(c)g,

Gbar when,

when sched lemma fm pred(when(c))g

simple sensor step proof: Prove simple sensor step lemma from

run fm when(c)g,

step fs run(pred(when(c))), m when(c), c cg,

sched when lemma fa cg,

dowhen pos

simple step lemma proof: Prove simple step lemma from

run fm when(c)g,

step fm when(c), s run(pred(when(c)))g,

sched when lemma fa cg,

dowhen pos

End simple props

simple props tcc: Module

Using simple props

Exporting all withsimple props

Theory

c: Var simple machine:C

i: Var naturalnumber

simple sensor step lemma TCC1: Formula

(c in CS) � (cell type(c) = sensor cell)

simple step lemma TCC1: Formula

(:(c in CS)) � (cell type(c) 6= sensor cell)

Proof

simple sensor step lemma TCC1 PROOF: Pro

simple sensor step lemma TCC1

simple step lemma TCC1 PROOF: Prove sim

End simple props tcc

Appendix A. LaTEX-printed Speci�cation Listings

sets: Module [T : Type]

Exporting all

Theory

set: Type is function[T ! bool]

x; y; z: Var T

a; b: Var set

?1[?2: function[set; set! set] ==

(� a; b : (� x : a(x) _ b(x)))

?1\ ?2: function[set; set! set] ==

(� a; b : (� x : a(x) ^ b(x)))

?1 n ?2: function[set; set! set] ==

(� a; b : (� x : a(x) ^ :b(x)))

add: function[T; set! set] == (� x; a : (� y : x = y _ a(y)))

f?1g: function[T ! set] == (� x : (� y : y = x))

?1 � ?2: function[set; set! bool] =

(� a; b : (8 z : a(z) � b(z)))

?1 2 ?2: function[T; set! bool] == (� x; b : b(x))

empty: function[set! bool] = (� a : (8 x : :a(x)))

;: set == (� x : false)

fullset: set == (� x : true)

extensionality: Axiom (8 x : x 2 a = x 2 b) � (a = b)

End sets

cardinality: Module [T : Type]

Using sets[T]

Exporting all

Assuming

x; y; z: Var T

N : Var nat

f : Var function[T ! nat]

�nite: Formula

(9N; f : (8 x; y : f(x) � N ^ (f(x) = f(y) �

Theory

a; b; c: Var set

j ? 1j: function[set! nat]

card ax: Axiom ja [bj+ ja \ bj = jaj+ jbj

card subset: Axiom a � b � jaj � jbj

card empty: Axiom jaj = 0, empty(a)

empty prop: Lemma jaj > 0 � (9 x : x 2 a)

card prop: Lemma

a � c ^ b � c ^ 2 � jaj > jcj ^ 2 � jbj > jcj � ja

Proof

empty prop proof: Prove empty prop fx x

card empty, empty

subset union: Sublemma a � c ^ b � c � a [

Appendix A. LaTEX-printed Speci�cation Listings

subset union proof: Prove subset union from

?1 � ?2 fz z@p3, b cg,

?1 � ?2 fz z@p3, a b, b cg,

?1 � ?2 fa a [b, b cg

m;n; p: Var nat

twice prop: Sublemma 2 �m > p ^ 2 � n > p � m + n > p

twice proof: Prove twice prop

card proof: Prove card prop from

twice prop fm jaj, n jbj, p jcjg,

card ax,

subset union,

card subset fa a [b, b cg

End cardinality

orderedsets: Module [T : Type, �: function[T

Using sets[T]

Exporting min withsets[T]

Assuming

x; y; z: Var T

re
exive: Formula x � x

transitive: Formula x � y ^ y � z � x � z

antisymmetry: Formula x � y ^ y � x � x =

dichotomy: Formula x � y _ y � x

Theory

a: Var set

min: function[set! T]

min ax: Axiom min(a) 2 a ^ (8 x : x 2 a � m

End orderedsets

Appendix A. LaTEX-printed Speci�cation Listings

repl machine: Module

Using simple machine; sets; cardinality

Exporting all withsimple machine

Theory

n: Var nat

m: Var M

c: Var C

voted: Type from C

voted ax: Axiom

(c in CA � c in voted) ^ (c in voted � :(c in CS))

r: nat

R: Type from nat with (� n : n � r)

i: Var R

F : function[R! function[M ! bool]]

rstate: Type is function[R! state]

�; � : Var rstate

maj: function[rstate; C ! D]

A: Var set[R]

x: Var D

maj ax: Axiom

(9A : 2 � jAj > jfullset[R]j ^ (8 i : i 2 A � �(i)(c) = x))

� maj(�; c) = x

vote: function[rstate; C;M ! rstate]

vote ax: Axiom

:(F (i)(m))

� vote(�; c;m)

= if c in voted

then �

with [(i)(c) := maj(�; c)]

else �

end if

sstep: function[rstate; C;M ! rstate]

sstep ax: Axiom :(F (i)(m)) � sstep(�; c;m)(

rstep: function[rstate; C;M ! rstate] ==

(� �; c;m : vote(sstep(�; c;m); c;m))

rrun: Recursive function[M ! rstate] =

(� m :

if m = 0

then (� i : initial state)

else rstep(rrun(m � 1); sched(m);m

end if)

by identity

rrunto: function[C ! rstate] == (� c : rrun(w

Proof

disharge �nite: Prove

�nite[R] ff (� i! nat : i), N rg from

R invariant fR var x@cg

End repl machine

Appendix A. LaTEX-printed Speci�cation Listings

repl machine tcc: Module

Using repl machine

Exporting all withrepl machine

Theory

n: Var naturalnumber

m: Var naturalnumber

x: Var R

R TCC1: Formula (9 n : n � r)

rrun TCC1: Formula (:(m = 0)) � (m � 1 � 0)

rrun TCC2: Formula (:(m = 0)) � identity(m) > identity(m � 1)

Proof

R TCC1 PROOF: Prove R TCC1

rrun TCC1 PROOF: Prove rrun TCC1

rrun TCC2 PROOF: Prove rrun TCC2

End repl machine tcc

repl machine tcc proofs: Module

Proof

Using repl machine tcc

R TCC1 PROOF: Prove R TCC1 fn rg

End repl machine tcc proofs

Appendix A. LaTEX-printed Speci�cation Listings

supports: Module

Using repl machine; orderedsets[M; naturalnumbers: �]; sets[C]

Exporting support, committed to

withrepl machine; orderedsets[M; naturalnumbers: �]; sets[C]

Theory

a; b; c: Var C

foundation: Recursive function[C ! set[C]] =

(� c :

(� a :

c = a

_ (:(c in voted _ c in CS)

^ (9 b : (b; c) 2 G ^ a 2 foundation(b)))))

by when

backup: function[C ! set[C]] =

(� c : (� a : (9 b : (b; c) 2 G ^ a 2 foundation(b))))

support: function[C ! set[C]] =

(� c : (� a : a 2 foundation(c) _ (c in voted ^ a 2 backup(c))))

Gbar support: Lemma (a; c) 2 G � a 2 support(c)

in own support: Lemma c 2 support(c)

subset support: Lemma

:(a in voted) ^ (a; c) 2 G � support(a) � support(c)

S; T : Var set[C]

i: Var R

t;m: Var M

critical times: function[C ! set[M]] ==

(� c : (� t : sched(t) 2 support(c)))

committed to: function[C !M] == (� c : min

commit when lemma: Lemma committed to(

commit support lemma: Lemma

a 2 support(c) � committed to(c) � when(a

commit Gbar lemma: Lemma

(a; c) 2 G ^ :(a in voted) � committed to(c

Proof

discharge re
exive: Prove re
exive

discharge transitive: Prove transitive

discharge antisymmetry: Prove antisymmetry

discharge dichotomy: Prove dichotomy

support backup: Sublemma a 2 support(c) =

support backup proof: Prove support backup

support,

backup fb b@p3g,

foundation fb b@p2g,

sensor ax fa b@P2g

Gbar support prf: Prove Gbar support from

support backup, backup fb ag, foundatio

in own support proof: Prove in own support

support backup fa cg

found support: Sublemma :(c in voted) � fo

found support proof: Prove found support fr

support fa x@p2g,

extensionality[C] fa foundation(c), b s

Appendix A. LaTEX-printed Speci�cation Listings

found sub support: Sublemma (b; c) 2 G � foundation(b) � support(c)

found sub support proof: Prove found sub support from

?1 � ?2 [C] fa foundation(b), b support(c)g,

support backup fa z@p1g,

backup fb b@C, a z@P1g

subset support proof: Prove subset support from

found sub support fb ag, found support fc ag

committed lemma: Sublemma

committed to(c) 2 critical times(c)

^ (8 t : t 2 critical times(c) � t � committed to(c))

committed proof: Prove committed lemma from

min ax fa critical times(c), x tg

commit when proof: Prove commit when lemma from

in own support,

committed lemma ft when(c)g,

sched when lemma fa cg

commit support proof: Prove commit support lemma from

committed lemma ft when(a)g, sched when lemma

commit Gbar lemma proof: Prove commit Gbar lemma from

subset support,

?1 � ?2 [C]

fa support(a),

b support(c),

z sched(committed to(a))g,

committed lemma ft committed to(a)g,

committed lemma fc ag

End supports

supports tcc: Module

Using supports

Exporting all withsupports

Theory

a: Var simple machine:C

c: Var simple machine:C

z: Var simple machine:C

x: Var simple machine:C

b: Var simple machine:C

foundation TCC1: Formula

((b; c) 2 G) ^ (:(c in voted _ c in CS)) ^ (:

� when(c) > when(b)

Proof

foundation TCC1 PROOF: Prove foundation

End supports tcc

Appendix A. LaTEX-printed Speci�cation Listings

supports tcc proofs: Module

Proof

Using supports tcc

foundation TCC1 PROOF: Prove foundation TCC1 from

Gbar when fa bg

End supports tcc proofs

correctness: Module

Using supports; sets[R]; cardinality[R]

Exporting all with supports; sets[R]

Theory

i; j: Var R

a; c: Var C

m: Var M

OK: function[R! set[C]] =

(� i :

(� c :

(8m : committed to(c) � m ^m � w

working: function[C ! set[R]] == (� c : (� i :

MOK: function[C ! bool] = (� c : 2 � jworkin

safe: Recursive function[C ! bool] =

(� c : MOK(c) ^ (8 a : (a; c) 2 G � safe(a))

correct: function[C ! bool] =

(� c : (8 j : OK(j)(c) � rrunto(c)(j)(c) = ru

the result: Theorem safe(c) � correct(c)

End correctness

Appendix A. LaTEX-printed Speci�cation Listings

correctness tcc: Module

Using correctness

Exporting all withcorrectness

Theory

a: Var simple machine:C

c: Var simple machine:C

safe TCC1: Formula ((a; c) 2 G) ^ (MOK(c)) � when(c) > when(a)

Proof

safe TCC1 PROOF: Prove safe TCC1

End correctness tcc

correctness tcc proofs: Module

Proof

Using correctness tcc

safe TCC1 PROOF: Prove safe TCC1 from

End correctness tcc proofs

Appendix A. LaTEX-printed Speci�cation Listings

connect: Module

Using correctness; natinduction; simple props

Exporting all

Theory

a; c: Var C

j: Var R

a correct at c: function[C;C! bool] =

(� a; c :

(8 j :

OK(j)(c) � rrunto(previous(c))(j)(a) = runto(previous(c))(a)))

stay correct: Lemma

(8 a : (a; c) 2 G � safe(c) ^ correct(a))

� (8 a : (a; c) 2 G � a correct at c(a; c))

Proof

i: Var R

m: Var M

r indstep: Lemma

OK(j)(c)

^ (a; c) 2 G

^when(a) � m

^m < when(c) ^ rrun(m)(j)(a) = rrunto(a)(j)(a)

� rrun(m+ 1)(j)(a) = rrunto(a)(j)(a)

r indstep proof: Prove r indstep from

rrun fm m + 1g,

vote ax

f� sstep(rrun(m); sched(m + 1);m+ 1)

c sched(m + 1),

m m + 1,

i jg,

sstep ax

f� rrun(m),

c sched(m + 1),

m m + 1,

i jg,

step fs rrun(m)(j), c sched(m+ 1), m

unique when fp when(a), q m + 1g,

sched when lemma,

OK fi j, m m+ 1g,

commit support lemma,

Gbar support

q: Var M

stay correct repl: Lemma

(a; c) 2 G ^OK(j)(c) � rrunto(previous(c))(

stay correct repl proof: Prove stay correct rep

limited induction

fp (� q : rrun(q)(j)(a) = rrunto(a)(j)(a

m when(a),

m1 when(c),

n when(previous(c))g,

r indstep fm i@p1g,

sched when lemma fa previous(c)g,

Gbar when,

when sched lemma fm pred(when(c))g,

dowhen pos

Gbar OK: Lemma (a; c) 2 G ^ :(a in voted)

Appendix A. LaTEX-printed Speci�cation Listings

Gbar OK proof: Prove Gbar OK from

?1 � ?2 [C] fa support(a), b support(c)g,

OK fm m@P3g,

OK fc ag,

Gbar when,

commit Gbar lemma,

subset support

notvoted transfer correct: Lemma

(a; c) 2 G ^ safe(c) ^ :(a in voted) ^ correct(a)

� OK(j)(c) � rrunto(a)(j)(a) = runto(a)(a)

notvoted proof: Prove notvoted transfer correct from

Gbar OK fi jg, correct fc ag

torch carried: Lemma

(a; c) 2 G ^ safe(c) � (9 j : OK(j)(a) ^OK(j)(c))

torch proof: Prove torch carried fj x@p2g from

card prop[R]

fa working(c),

b working(a),

c fullset[R]g,

empty prop[R] fa working(c) \working(a)g,

safe,

safe fc ag,

MOK,

MOK fc ag,

?1 � ?2 [R] fa working(c), b fullset[R]g,

?1 � ?2 [R] fa working(a), b fullset[R]g

�: Var rstate

vote appln: Lemma

:(F (i)(when(a))) ^ a in voted

� vote(�; a;when(a))(i)(a) = maj(�; a)

vote appln proof: Prove vote appln from

vote ax fc a, m when(a)g

safe at a: Lemma OK(i)(c) ^ (a; c) 2 G � :(F

safe at a proof: Prove safe at a from

OK fm when(a)g, Gbar when, Gbar supp

OK OK: Lemma

safe(c) ^OK(i)(c) ^OK(j)(c) ^ (a; c) 2 G ^

� rrunto(a)(i)(a) = rrunto(a)(j)(a)

OK OK proof: Prove OK OK from

rrun fm when(a)g,

sched when lemma,

nat invariant fnat var when(a)g,

vote appln f� sstep(rrun(pred(when(a)))

safe at a,

vote appln

fi j, � sstep(rrun(pred(when(a))); a

safe at a fi jg

voted transfer correct: Lemma

(a; c) 2 G ^ safe(c) ^ a in voted ^ correct(a)

� OK(j)(c) � rrunto(a)(j)(a) = runto(a)

voted proof: Prove voted transfer correct fro

OK OK fi j@p2g,

torch carried,

correct fc a, j j@p2g

unvoted transfer correct: Lemma

(a; c) 2 G ^ safe(c) ^ correct(a)

� OK(j)(c) � rrunto(a)(j)(a) = runto(a)

unvoted proof: Prove unvoted transfer correc

voted transfer correct, notvoted transfer cor

Appendix A. LaTEX-printed Speci�cation Listings

stay correct proof: Prove stay correct from

stay correct simple,

stay correct repl fj j@p3g,

a correct at c,

when sched lemma fm pred(when(c))g,

unvoted transfer correct fj j@p3g

End connect

sensor step: Module

Using correctness ; simple props

Exporting withcorrectness; simple props

Theory

a; c: Var C

sensor inductive step: Lemma

c in CS ^ (8 a : (a; c) 2 G � safe(c) ^ correc

Proof

j: Var R

sensor step lemma: Lemma

when(c) > 0 ^ :(c in voted)

� OK(j)(c)

� rrunto(c)(j) = step(rrun(pred(when(

sensor step proof: Prove sensor step lemma f

rrun fm when(c)g,

vote ax

fi j,

m when(c),

� sstep(rrun(pred(when(c))); c;when(c

sstep ax

fi j,

� rrun(pred(when(c))),

m when(c)g,

sched when lemma fa cg,

OK fi j, m when(c)g,

commit when lemma

sensor rrunto lemma: Lemma

when(c) > 0 ^ c in CS
� OK(j)(c) � rrunto(c)(j)(c) = sensor(c)

Appendix A. LaTEX-printed Speci�cation Listings

sensor rrunto proof: Prove sensor rrunto lemma from

sensor step lemma,

step

fs rrun(pred(when(c)))(j),

m when(c),

c cg,

voted ax

main sensor lemma: Lemma

when(c) > 0 ^ c in CS � OK(j)(c) � rrunto(c)(j)(c) = runto(c)(c)

main sensor proof: Prove main sensor lemma from

simple sensor step lemma, sensor rrunto lemma

sensor ind step proof: Prove sensor inductive step from

dowhen pos, main sensor lemma fj j@p3g, correct, sensor ax

End sensor step

sensor step tcc: Module

Using sensor step

Exporting all withsensor step

Theory

c: Var simple machine:C

j: Var repl machine:R

sensor rrunto lemma TCC1: Formula

(OK(j)(c)) ^ (when(c) > 0 ^ c in CS)

� (cell type(c) = sensor cell)

Proof

sensor rrunto lemma TCC1 PROOF: Prove s

End sensor step tcc

Appendix A. LaTEX-printed Speci�cation Listings

nonvoted step: Module

Using correctness; connect

Exporting withcorrectness; connect

Theory

a; c: Var C

j: Var R

nonvoted inductive step: Lemma

:(c in CS)

^ :(c in voted) ^ (8 a : (a; c) 2 G � safe(c) ^ correct(a))

� correct(c)

nonvoted task OK: Lemma

:(c in CS) ^ (8 a : (a; c) 2 G � a correct at c(a; c))

� OK(j)(c)

� task(c)(rrunto(previous(c))(j)) = task(c)(runto(previous(c)))

all correct at c: function[C ! bool] =

(� c : (8 a : (a; c) 2 G � a correct at c(a; c)))

Proof

nonvoted task OK proof: Prove nonvoted task OK fa a@p2g from

a correct at c fa a@p2g,

dependency

fs rrun(pred(when(c)))(j),

t run(pred(when(c)))g,

dowhen previous

nonvoted rrunto task: Lemma

:(c in CS)

^ :(c in voted) ^ (8 a : (a; c) 2 G � a correct at c(a; c))

� OK(j)(c) � rrunto(c)(j)(c) = task(c)(rrun(pred(when(c)))(j))

nonvoted rrunto task proof: Prove nonvoted

rrun fm when(c)g,

vote ax

f� sstep(rrun(pred(when(c))); c;when(c

m when(c),

i jg,

sstep ax

fi j,

� rrun(pred(when(c))),

m when(c)g,

step fm when(c), s rrun(pred(when(c)

sched when lemma fa cg,

OK fi j, m when(c)g,

commit when lemma,

dowhen pos

link: Lemma

:(c in CS) ^ :(c in voted) ^ (8 a : (a; c) 2

� OK(j)(c) � rrunto(c)(j)(c) = runto(c)(

link proof: Prove link fa a@p6g from

nonvoted rrunto task,

simple step lemma,

nonvoted task OK,

dowhen previous,

all correct at c fa a@p3g,

all correct at c fa a@p1g

main non voted lemma: Lemma

:(c in CS)

^ :(c in voted) ^ (8 a : (a; c) 2 G � sa

� OK(j)(c) � rrunto(c)(j)(c) = runto(c)(

main nonvoted proof: Prove main non voted

link, stay correct fa a@p1g

Appendix A. LaTEX-printed Speci�cation Listings

nonvoted ind proof: Prove nonvoted inductive step fa a@p1g from

main non voted lemma fj j@p2g, correct

End nonvoted step

nonvoted step tcc: Module

Using nonvoted step

Exporting all withnonvoted step

Theory

c: Var simple machine:C

j: Var repl machine:R

a: Var simple machine:C

nonvoted task OK TCC1: Formula

(OK(j)(c))

^ (:(c in CS) ^ (8 a : (a; c) 2 G � a co

� (cell type(c) 6= sensor cell)

nonvoted rrunto task TCC1: Formula

(OK(j)(c))

^ (:(c in CS)

^:(c in voted)

^ (8 a : (a; c) 2 G � a correct

� (cell type(c) 6= sensor cell)

Proof

nonvoted task OK TCC1 PROOF: Prove non

nonvoted rrunto task TCC1 PROOF: Prove n

End nonvoted step tcc

Appendix A. LaTEX-printed Speci�cation Listings

voted step: Module

Using correctness; connect; nonvoted step

Exporting induction body withcorrectness; connect

Theory

a; c: Var C

voted inductive step: Lemma

c in voted ^ (8 a : (a; c) 2 G � safe(c) ^ correct(a))

� correct(c)

induction body: function[C ! bool] =

(� c : (8 a : (a; c) 2 G � safe(c) ^ correct(a)))

Proof

i; j: Var R

�: Var rstate

m: Var M

voted step lemma: Lemma

c in voted

� OK(j)(c)

� sstep(rrun(pred(when(c))); c;when(c))(j)(c)

= task(c)(rrun(pred(when(c)))(j))

voted step proof: Prove voted step lemma fro

sstep ax

fi j,

� rrun(pred(when(c))),

m when(c)g,

step fm when(c), s rrun(pred(when(c)

OK fi j, m when(c)g,

commit when lemma,

voted ax

sstep task lemma: Lemma

c in voted ^ (8 a : (a; c) 2 G � a correct at

� OK(j)(c)

� sstep(rrun(pred(when(c))); c;when(c

= task(c)(run(pred(when(c))))

sstep task proof: Prove sstep task lemma fa

voted step lemma, nonvoted task OK, dowh

x: Var D

maj lemma: Lemma

MOK(c) ^ (8 i : OK(i)(c) � �(i)(c) = x) � m

maj proof: Prove maj lemma fi i@p1g fro

maj ax fA working(c)g, MOK

vote lemma: Lemma

OK(j)(c)

^MOK(c)

^ c in voted

^ committed to(c) � m

^m � when(c)

^ (8 i : OK(i)(c) � sstep(�; c;

� rstep(�; c;m)(j)(c) = x

Appendix A. LaTEX-printed Speci�cation Listings

vote lemma proof: Prove vote lemma fi i@p2g from

vote ax fi j, � sstep(�; c;m)g,

maj lemma f� sstep(�; c;m)g,

OK fi jg

rstep task: Lemma

MOK(c)

^ c in voted

^OK(j)(c) ^ (8 a : (a; c) 2 G � a correct at c(a; c))

� rstep(rrun(pred(when(c))); c;when(c))(j)(c)

= task(c)(run(pred(when(c))))

active task: function[C ! CT] ==

(� c! CT : if c in CS then arb task else c end if)

rstep task proof: Prove rstep task fa a@p1g from

sstep task lemma fj i@p2g,

vote lemma

fx task(active task(c))(run(pred(when(c)))),

� rrun(pred(when(c))),

m when(c)g,

commit when lemma,

voted ax

rrunto task: Lemma

MOK(c)

^ c in voted

^OK(j)(c) ^ (8 a : (a; c) 2 G � a correct at c(a; c))

� rrunto(c)(j)(c) = task(c)(run(pred(when(c))))

rrunto task proof: Prove rrunto task fa a@p1g from

rstep task,

rrun fm when(c)g,

dowhen pos,

sched when lemma fa cg

voted link lemma: Lemma

c in voted ^MOK(c) ^ (8 a : (a; c) 2 G � a

� OK(j)(c) � rrunto(c)(j)(c) = runto(c)(

voted link proof: Prove voted link lemma fa

rrunto task, simple step lemma, voted ax

main voted lemma: Lemma

c in voted ^ induction body(c)

� OK(j)(c) � rrunto(c)(j)(c) = runto(c)(

sensors not voted: Lemma c in voted � :(c i

sensors not voted proof: Prove sensors not vo

main vote proof: Prove main voted lemma fr

voted link lemma,

safe,

stay correct fa a@p1g,

sensor ax,

sensors not voted,

induction body fa a@p3g,

induction body fa a@p4g

voted ind step proof: Prove voted inductive s

main voted lemma fj j@p2g, correct, ind

End voted step

Appendix A. LaTEX-printed Speci�cation Listings

voted step tcc: Module

Using voted step

Exporting all withvoted step

Theory

c: Var simple machine:C

j: Var repl machine:R

i: Var repl machine:R

a: Var simple machine:C

voted step lemma TCC1: Formula

(OK(j)(c)) ^ (c in voted) � (cell type(c) 6= sensor cell)

sstep task lemma TCC1: Formula

(OK(j)(c))

^ (c in voted ^ (8 a : (a; c) 2 G � a correct at c(a; c)))

� (cell type(c) 6= sensor cell)

rstep task TCC1: Formula

(MOK(c) ^ c in voted

^OK(j)(c) ^ (8 a : (a; c) 2 G � a correct at c(a; c)))

� (cell type(c) 6= sensor cell)

active task TCC1: Formula

(cell type(if c in CS then arb task else c end if) 6= sensor cell)

Proof

voted step lemma TCC1 PROOF: Prove voted step lemma TCC1

sstep task lemma TCC1 PROOF: Prove sstep task lemma TCC1

rstep task TCC1 PROOF: Prove rstep task TCC1

active task TCC1 PROOF: Prove active task

End voted step tcc

Appendix A. LaTEX-printed Speci�cation Listings

voted step tcc proofs: Module

Proof

Using voted step tcc

voted step lemma TCC1 PROOF: Prove voted step lemma TCC1 from

voted ax

sstep task lemma TCC1 PROOF: Prove sstep task lemma TCC1 from

voted ax

rstep task TCC1 PROOF: Prove rstep task TCC1 from voted ax

End voted step tcc proofs

correctness proof: Module

Using correctness ; voted step; nonvoted step; se

noetherian[C; (?1; ?2)2 G]

Exporting withcorrectness

Proof

a; c: Var C

discharge well founded: Prove well founded f

Gbar when fc bg

inductive step: Lemma

(8 a : (a; c) 2 G � safe(c) ^ correct(a)) � cor

almost �nal proof: Prove inductive step fa

sensor inductive step,

voted inductive step,

nonvoted inductive step,

induction body fa a@p1g,

induction body fa a@p2g,

induction body fa a@p3g,

induction body

�nal proof: Prove the result from

mod induction

fA safe,

B correct,

d c,

d2 a@p3g,

safe fa d4@p1, c d3@p1g,

inductive step fc d1@p1g

End correctness proof

Appendix A. LaTEX-printed Speci�cation Listings

outputs: Module

Using correctness

Exporting all withcorrectness

Theory

c: Var C

j: Var R

actuators correct: Corollary

c in voted ^ safe(c) ^ :F (j)(when(c))

� rrunto(c)(j)(c) = runto(c)(c)

Proof

a: Var C

�: Var rstate

i: Var R

m: Var M

vote gives maj: Lemma

:F (i)(m) ^ a in voted � vote(�; a;m)(i)(a) = maj(�; a)

vote gives maj proof: Prove vote gives maj from vote ax fc ag

rrun gets maj: Lemma

:F (i)(when(a)) ^ a in voted

� rrunto(a)(i)(a) = maj(sstep(rrun(pred(when(a))); a;when(a)); a)

rrun gets maj proof: Prove rrun gets maj fro

rrun fm when(a)g,

vote gives maj

f� sstep(rrun(pred(when(a))); a;when(

m when(a)g,

dowhen pos fc ag,

sched when lemma

working agreement: Lemma

:F (i)(when(a)) ^ :F (j)(when(a)) ^ a in vo

� rrunto(a)(i)(a) = rrunto(a)(j)(a)

working agreement proof: Prove working agre

rrun gets maj, rrun gets maj fi jg

safe OK: Lemma safe(c) � (9 j : OK(j)(c))

safe OK proof: Prove safe OK fj x@p4g fr

safe,

MOK,

nat invariant fnat var jfullset[R]jg,

empty prop[R] fa working(c)g

actuators correct proof: Prove actuators corre

the result fc c@cg,

correct fj i@p3, c c@cg,

working agreement fa c@c, i j@p4g,

safe OK,

OK fm when(c), i i@p3g,

commit when lemma

End outputs

Appendix B

Cross-Reference Listing

This Appendix provides a cross-reference listing to the identi�ers declared

in the Ehdm speci�cation. It should assist in reading and navigating the

Ehdm speci�cations in Appendix A.

Identi�er Declaration Module

a_correct_at_c de�ned-fn connect

active_task literal-fn voted_step

active_tasks subtype-with simple_machine

active_tasks_TCC1 formula simple_machine_tcc

active_tasks_TCC1_PROOF prove simple_machine_tcc

active_tasks_TCC1_PROOF prove simple_machine_tcc_proofs

active_task_TCC1 formula voted_step_tcc

active_task_TCC1_PROOF prove voted_step_tcc

actuators subtype-with simple_machine

actuators_correct formula outputs

actuators_correct_proof prove outputs

actuators_TCC1 formula simple_machine_tcc

actuators_TCC1_PROOF prove simple_machine_tcc

actuators_TCC1_PROOF prove simple_machine_tcc_proofs

add literal-fn sets

all_correct_at_c de�ned-fn nonvoted_step

Identi�er Declaration Module

almost_final_proof prove correc

antisymmetry formula ordere

arb_actuator const simple

arb_task const simple

backup de�ned-fn suppor

C type simple

card function cardin

card_ax axiom cardin

card_empty axiom cardin

cardinality module cardin

card_proof prove cardin

card_prop formula cardin

card_subset axiom cardin

cell_type function simple

cell_types type simple

commit_Gbar_lemma formula suppor

commit_Gbar_lemma_proof prove suppor

commit_support_lemma formula suppor

commit_support_proof prove suppor

committed_lemma formula suppor

committed_proof prove suppor

85

Appendix B. Cross-Reference Listing

Identi�er Declaration Module

committed_to literal-fn supports

commit_when_lemma formula supports

commit_when_proof prove supports

connect module connect

correct de�ned-fn correctness

correctness module correctness

correctness_proof module correctness_proof

correctness_tcc module correctness_tcc

correctness_tcc_proofs module correctness_tcc_proofs

critical_times literal-fn supports

D type simple_machine

dependency axiom simple_machine

dependency_TCC1 formula simple_machine_tcc

dependency_TCC1_PROOF prove simple_machine_tcc

dichotomy formula orderedsets

difference literal-fn sets

discharge prove natinduction

discharge_antisymmetry prove supports

discharge_dichotomy prove supports

discharge_reflexive prove supports

discharge_transitive prove supports

discharge_well_founded prove correctness_proof

disharge_finite prove repl_machine

dowhen function simple_machine

dowhen_pos axiom simple_machine

dowhen_previous formula simple_machine

dowhen_prev_proof prove simple_machine

empty de�ned-fn sets

empty_prop formula cardinality

empty_prop_proof prove cardinality

emptyset literal-const sets

extensionality axiom sets

F function repl_machine

final_proof prove correctness_proof

finite formula cardinality

Identi�er Declaration Modul

foundation recursive-fn suppor

foundation_TCC1 formula suppor

foundation_TCC1_PROOF prove suppor

foundation_TCC1_PROOF prove suppor

found_sub_support formula suppor

found_sub_support_proof prove suppor

found_support formula suppor

found_support_proof prove suppor

fullset literal-const sets

Gbar function simple

Gbar_OK formula connec

Gbar_OK_proof prove connec

Gbar_support formula suppor

Gbar_support_prf prove suppor

Gbar_when axiom simple

general_induction axiom noethe

identity literal-fn natind

identity literal-fn simple

ind_m_proof prove natind

ind_m_proof_TCC1 formula natind

ind_m_proof_TCC1_PROOF prove natind

ind_proof prove natind

indstep formula simple

indstep_proof prove simple

induction formula natind

induction_body de�ned-fn voted_

induction_m formula natind

inductive_step formula correc

in_own_support formula suppor

in_own_support_proof prove suppor

instance module natind

intersection literal-fn sets

limited_induction formula natind

limited_proof prove natind

link formula nonvot

Appendix B. Cross-Reference Listing

Identi�er Declaration Module

link_proof prove nonvoted_step

M type simple_machine

main_non_voted_lemma formula nonvoted_step

main_nonvoted_proof prove nonvoted_step

main_sensor_lemma formula sensor_step

main_sensor_proof prove sensor_step

main_voted_lemma formula voted_step

main_vote_proof prove voted_step

maj function repl_machine

maj_ax axiom repl_machine

maj_lemma formula voted_step

maj_proof prove voted_step

member literal-fn sets

min function orderedsets

min_ax axiom orderedsets

mod_induction formula noetherian

mod_proof prove noetherian

MOK de�ned-fn correctness

natinduction module natinduction

natinduction_tcc module natinduction_tcc

noetherian module noetherian

nonvoted_ind_proof prove nonvoted_step

nonvoted_inductive_step formula nonvoted_step

nonvoted_rrunto_task formula nonvoted_step

nonvoted_rrunto_task_proof prove nonvoted_step

nonvoted_rrunto_task_TCC1 formula nonvoted_step_tcc

nonvoted_rrunto_task_TCC1_PROOF prove nonvoted_step_tcc

nonvoted_step module nonvoted_step

nonvoted_step_tcc module nonvoted_step_tcc

nonvoted_task_OK formula nonvoted_step

nonvoted_task_OK_proof prove nonvoted_step

nonvoted_task_OK_TCC1 formula nonvoted_step_tcc

nonvoted_task_OK_TCC1_PROOF prove nonvoted_step_tcc

notvoted_proof prove connect

notvoted_transfer_correct formula connect

Identi�er Declaration Modu

OK de�ned-fn corre

OK_OK formula conne

OK_OK_proof prove conne

orderedsets module order

outputs module outpu

prev literal-fn natin

previous literal-fn simpl

r const repl_

R subtype-with repl_

reflexive formula order

repl_machine module repl_

repl_machine_tcc module repl_

repl_machine_tcc_proofs module repl_

r_indstep formula conne

r_indstep_proof prove conne

rrun recursive-fn repl_

rrun_gets_maj formula outpu

rrun_gets_maj_proof prove outpu

rrun_TCC1 formula repl_

rrun_TCC1_PROOF prove repl_

rrun_TCC2 formula repl_

rrun_TCC2_PROOF prove repl_

rrunto literal-fn repl_

rrunto_task formula voted

rrunto_task_proof prove voted

rstate type repl_

rstep literal-fn repl_

rstep_task formula voted

rstep_task_proof prove voted

rstep_task_TCC1 formula voted

rstep_task_TCC1_PROOF prove voted

rstep_task_TCC1_PROOF prove voted

R_TCC1 formula repl_

R_TCC1_PROOF prove repl_

R_TCC1_PROOF prove repl_

Appendix B. Cross-Reference Listing

Identi�er Declaration Module

run recursive-fn simple_machine

run_TCC1 formula simple_machine_tcc

run_TCC1_PROOF prove simple_machine_tcc

run_TCC2 formula simple_machine_tcc

run_TCC2_PROOF prove simple_machine_tcc

runto literal-fn simple_machine

safe recursive-fn correctness

safe_at_a formula connect

safe_at_a_proof prove connect

safe_OK formula outputs

safe_OK_proof prove outputs

safe_TCC1 formula correctness_tcc

safe_TCC1_PROOF prove correctness_tcc

safe_TCC1_PROOF prove correctness_tcc_proofs

sched function simple_machine

sched_when_ax axiom simple_machine

sched_when_lemma formula simple_machine

sched_when_proof prove simple_machine

sensor function simple_machine

sensor_ax axiom simple_machine

sensor_fn type simple_machine

sensor_ind_step_proof prove sensor_step

sensor_inductive_step formula sensor_step

sensor_rrunto_lemma formula sensor_step

sensor_rrunto_lemma_TCC1 formula sensor_step_tcc

sensor_rrunto_lemma_TCC1_PRF prove sensor_step_tcc

sensor_rrunto_proof prove sensor_step

sensors subtype-with simple_machine

sensors_not_voted formula voted_step

sensors_not_voted_proof prove voted_step

sensors_TCC1 formula simple_machine_tcc

sensors_TCC1_PROOF prove simple_machine_tcc

sensors_TCC1_PROOF prove simple_machine_tcc_proofs

sensor_step module sensor_step

sensor_step_lemma formula sensor_step

Identi�er Declaratio

sensor_step_proof prove
sensor_step_tcc module

set type

sets module
simple_machine module

simple_machine_tcc module

simple_machine_tcc_proofs module

simple_props module

simple_props_tcc module
simple_sensor_step_lemma formula

simple_sensor_step_lemma_TCC1 formula

simple_sensor_step_lemma_TCC1_PRF prove
simple_sensor_step_proof prove

simple_step_lemma formula

simple_step_lemma_proof prove
simple_step_lemma_TCC1 formula

simple_step_lemma_TCC1_PROOF prove

singleton literal-fn
sstep function

sstep_ax axiom

sstep_task_lemma formula

sstep_task_lemma_TCC1 formula

sstep_task_lemma_TCC1_PROOF prove

sstep_task_lemma_TCC1_PROOF prove

sstep_task_proof prove

start_cell const

state type

stay_correct formula

stay_correct_proof prove

stay_correct_repl formula
stay_correct_repl_proof prove

stay_correct_simple formula

stay_simple_proof prove
step de�ned-fn

step_TCC1 formula

Appendix B. Cross-Reference Listing

Identi�er Declaration Module

step_TCC1_PROOF prove simple_machine_tcc

step_TCC2 formula simple_machine_tcc

step_TCC2_PROOF prove simple_machine_tcc

subset de�ned-fn sets

subset_support formula supports

subset_support_proof prove supports

subset_union formula cardinality

subset_union_proof prove cardinality

support de�ned-fn supports

support_backup formula supports

support_backup_proof prove supports

supports module supports

supports_tcc module supports_tcc

supports_tcc_proofs module supports_tcc_proofs

task function simple_machine

task_fn type simple_machine

the_result formula correctness

torch_carried formula connect

torch_proof prove connect

transitive formula orderedsets

twice_proof prove cardinality

twice_prop formula cardinality

undef const simple_machine

union literal-fn sets

unique_when formula simple_machine

unique_when_proof prove simple_machine

unvoted_proof prove connect

unvoted_transfer_correct formula connect

vote function repl_machine

vote_appln formula connect

vote_appln_proof prove connect

vote_ax axiom repl_machine

voted subtype repl_machine

voted_ax axiom repl_machine

voted_ind_step_proof prove voted_step

Identi�er Declaration M

voted_inductive_step formula vo

voted_link_lemma formula vo

voted_link_proof prove vo

voted_proof prove co

voted_step module vo

voted_step_lemma formula vo

voted_step_lemma_TCC1 formula vo

voted_step_lemma_TCC1_PROOF prove vo

voted_step_lemma_TCC1_PROOF prove vo

voted_step_proof prove vo

voted_step_tcc module vo

voted_step_tcc_proofs module vo

voted_transfer_correct formula co

vote_gives_maj formula ou

vote_gives_maj_proof prove ou

vote_lemma formula vo

vote_lemma_proof prove vo

well_founded formula no

when_sched_lemma formula si

when_sched_proof prove si

working literal-fn co

working_agreement formula ou

working_agreement_proof prove ou

Table B.1: Ehdm Identifers used in

Appendix C

Results of Proof-Chain Analysis

The following pages reproduce the output from the Ehdm proof-chain an-

alyzer in \terse mode" applied to the formula actuators correct in module

outputs. The Ehdm proof-chain analyzer examines the macroscopic structure

of a veri�cation|checking that all the premises used in a proof are either ax-

ioms, de�nitions, or formulas which are, themselves, the target of a successful

proof elsewhere in the veri�cation. If any formulas are used from a module

having an assuming clause, then the proof-chain analyzer checks that those

assumptions are discharged by successful proofs; similarly, if formulas are used

from a module having a tcc module, then the proof-chain analyzer checks that

all the tccs in that module are discharged by successful proofs. The proof-

chain analyzer ignores unsuccessful proofs (such as automatically-generated

tcc proofs) when a successful proof for the same formula can be found. The

\terse mode" output reproduced here provides a commentary on only the \in-

teresting" cases, namely proof obligations involving assuming clauses and tccs,

and a summary. All the proofs listed in the summary were performed by the

Ehdm theorem prover in \checking mode."

Proof chain for formula actuators_correct

Use of the formula

correctness.the_result

requires the following TCCs to be proven

correctness_tcc.safe_TCC1

Formula correctness_tcc.safe_TCC1 is a te

correctness.safe

Proof of

correctness_tcc.safe_TCC1

must not use

correctness.safe

Use of the formula

simple_machine.Gbar_when

requires the following TCCs to be proven

simple_machine_tcc.sensors_TCC1

simple_machine_tcc.actuators_TCC1

simple_machine_tcc.active_tasks_TCC1

simple_machine_tcc.dependency_TCC1

simple_machine_tcc.step_TCC1

simple_machine_tcc.step_TCC2

90

Appendix C. Results of Proof-Chain Analysis

simple_machine_tcc.run_TCC1

simple_machine_tcc.run_TCC2

Formula simple_machine_tcc.run_TCC2 is a termination TCC for

simple_machine.run

Proof of

simple_machine_tcc.run_TCC2

must not use

simple_machine.run

Use of the formula

noetherian[simple_machine.C, simple_machine.Gbar].mod_induction

requires the following assumptions to be discharged

noetherian[simple_machine.C, simple_machine.Gbar].well_founded

Use of the formula

sensor_step.sensor_inductive_step

requires the following TCCs to be proven

sensor_step_tcc.sensor_rrunto_lemma_TCC1

Use of the formula

simple_props.simple_sensor_step_lemma

requires the following TCCs to be proven

simple_props_tcc.simple_sensor_step_lemma_TCC1

simple_props_tcc.simple_step_lemma_TCC1

Use of the formula

repl_machine.rrun

requires the following TCCs to be proven

repl_machine_tcc.R_TCC1

repl_machine_tcc.rrun_TCC1

repl_machine_tcc.rrun_TCC2

Formula repl_machine_tcc.rrun_TCC2 is a termination TCC for

repl_machine.rrun

Proof of

repl_machine_tcc.rrun_TCC2

must not use

repl_machine.rrun

Use of the formula

supports.commit_when_lemma

requires the following TCCs to be proven

supports_tcc.foundation_TCC1

Formula supports_tcc.foundation_TCC1 is a

supports.foundation

Proof of

supports_tcc.foundation_TCC1

must not use

supports.foundation

Use of the formula

orderedsets[naturalnumber, <=].min_ax

requires the following assumptions to be

orderedsets[naturalnumber, <=].reflexiv

orderedsets[naturalnumber, <=].transiti

orderedsets[naturalnumber, <=].antisymm

orderedsets[naturalnumber, <=].dichotom

Use of the formula

voted_step.voted_inductive_step

requires the following TCCs to be proven

voted_step_tcc.voted_step_lemma_TCC1

voted_step_tcc.sstep_task_lemma_TCC1

voted_step_tcc.rstep_task_TCC1

voted_step_tcc.active_task_TCC1

Use of the formula

nonvoted_step.nonvoted_task_OK

requires the following TCCs to be proven

nonvoted_step_tcc.nonvoted_task_OK_TCC1

Appendix C. Results of Proof-Chain Analysis

nonvoted_step_tcc.nonvoted_rrunto_task_TCC1

Use of the formula

natinduction.induction_m

requires the following TCCs to be proven

natinduction_tcc.ind_m_proof_TCC1

Use of the formula

noetherian[naturalnumber, natinduction.prev].general_induction

requires the following assumptions to be discharged

noetherian[naturalnumber, natinduction.prev].well_founded

Use of the formula

cardinality[repl_machine.R].card_prop

requires the following assumptions to be discharged

cardinality[repl_machine.R].finite

================== SUMMARY ==================

The proof chain is complete

The axioms and assumptions at the base are:

cardinality[EXPR].card_ax

cardinality[EXPR].card_empty

cardinality[EXPR].card_subset

naturalnumbers.nat_invariant

noetherian[EXPR, EXPR].general_induction

orderedsets[EXPR, EXPR].min_ax

repl_machine.R_invariant

repl_machine.maj_ax

repl_machine.sstep_ax

repl_machine.vote_ax

repl_machine.voted_ax

sets[EXPR].extensionality

simple_machine.Gbar_when

simple_machine.dependency

simple_machine.distinct_cell_types

simple_machine.dowhen_pos

simple_machine.sched_when_ax

simple_machine.sensor_ax

Total: 18

The definitions are:

connect.a_correct_at_c

correctness.MOK

correctness.OK

correctness.correct

correctness.safe

nonvoted_step.all_correct_at_c

repl_machine.rrun

sets[EXPR].empty

sets[EXPR].subset

simple_machine.run

simple_machine.step

supports.backup

supports.foundation

supports.support

voted_step.induction_body

Total: 15

The formulae used are:

cardinality[EXPR].card_prop

cardinality[EXPR].empty_prop

cardinality[EXPR].subset_union

cardinality[EXPR].twice_prop

cardinality[repl_machine.R].finite

connect.Gbar_OK

connect.OK_OK

connect.notvoted_transfer_correct

connect.r_indstep

connect.safe_at_a

connect.stay_correct

Appendix C. Results of Proof-Chain Analysis

connect.stay_correct_repl

connect.torch_carried

connect.unvoted_transfer_correct

connect.vote_appln

connect.voted_transfer_correct

correctness.the_result

correctness_proof.inductive_step

correctness_tcc.safe_TCC1

natinduction.induction

natinduction.induction_m

natinduction.limited_induction

natinduction_tcc.ind_m_proof_TCC1

noetherian[EXPR, EXPR].mod_induction

noetherian[naturalnumber, natinduction.prev].well_founded

noetherian[simple_machine.C, simple_machine.Gbar].well_founded

nonvoted_step.link

nonvoted_step.main_non_voted_lemma

nonvoted_step.nonvoted_inductive_step

nonvoted_step.nonvoted_rrunto_task

nonvoted_step.nonvoted_task_OK

nonvoted_step_tcc.nonvoted_rrunto_task_TCC1

nonvoted_step_tcc.nonvoted_task_OK_TCC1

orderedsets[naturalnumber, <=].antisymmetry

orderedsets[naturalnumber, <=].dichotomy

orderedsets[naturalnumber, <=].reflexive

orderedsets[naturalnumber, <=].transitive

outputs.actuators_correct

outputs.rrun_gets_maj

outputs.safe_OK

outputs.vote_gives_maj

outputs.working_agreement

repl_machine_tcc.R_TCC1

repl_machine_tcc.rrun_TCC1

repl_machine_tcc.rrun_TCC2

sensor_step.main_sensor_lemma

sensor_step.sensor_inductive_step

sensor_step.sensor_rrunto_lemma

sensor_step.sensor_step_lemma

sensor_step_tcc.sensor_rrunto_lemma_TCC

simple_machine.dowhen_previous

simple_machine.sched_when_lemma

simple_machine.unique_when

simple_machine.when_sched_lemma

simple_machine_tcc.active_tasks_TCC1

simple_machine_tcc.actuators_TCC1

simple_machine_tcc.dependency_TCC1

simple_machine_tcc.run_TCC1

simple_machine_tcc.run_TCC2

simple_machine_tcc.sensors_TCC1

simple_machine_tcc.step_TCC1

simple_machine_tcc.step_TCC2

simple_props.indstep

simple_props.simple_sensor_step_lemma

simple_props.simple_step_lemma

simple_props.stay_correct_simple

simple_props_tcc.simple_sensor_step_lem

simple_props_tcc.simple_step_lemma_TCC1

supports.Gbar_support

supports.commit_Gbar_lemma

supports.commit_support_lemma

supports.commit_when_lemma

supports.committed_lemma

supports.found_sub_support

supports.found_support

supports.in_own_support

supports.subset_support

supports.support_backup

supports_tcc.foundation_TCC1

voted_step.main_voted_lemma

voted_step.maj_lemma

voted_step.rrunto_task

voted_step.rstep_task

Appendix C. Results of Proof-Chain Analysis

voted_step.sensors_not_voted

voted_step.sstep_task_lemma

voted_step.vote_lemma

voted_step.voted_inductive_step

voted_step.voted_link_lemma

voted_step.voted_step_lemma

voted_step_tcc.active_task_TCC1

voted_step_tcc.rstep_task_TCC1

voted_step_tcc.sstep_task_lemma_TCC1

voted_step_tcc.voted_step_lemma_TCC1

Total: 93

The completed proofs are:

cardinality[EXPR].card_proof

cardinality[EXPR].empty_prop_proof

cardinality[EXPR].subset_union_proof

cardinality[EXPR].twice_proof

connect.Gbar_OK_proof

connect.OK_OK_proof

connect.notvoted_proof

connect.r_indstep_proof

connect.safe_at_a_proof

connect.stay_correct_proof

connect.stay_correct_repl_proof

connect.torch_proof

connect.unvoted_proof

connect.vote_appln_proof

connect.voted_proof

correctness_proof.almost_final_proof

correctness_proof.discharge_well_founded

correctness_proof.final_proof

correctness_tcc_proofs.safe_TCC1_PROOF

natinduction.discharge

natinduction.ind_m_proof

natinduction.ind_proof

natinduction.limited_proof

natinduction_tcc.ind_m_proof_TCC1_PROOF

noetherian[EXPR, EXPR].mod_proof

nonvoted_step.link_proof

nonvoted_step.main_nonvoted_proof

nonvoted_step.nonvoted_ind_proof

nonvoted_step.nonvoted_rrunto_task_proo

nonvoted_step.nonvoted_task_OK_proof

nonvoted_step_tcc.nonvoted_rrunto_task_

nonvoted_step_tcc.nonvoted_task_OK_TCC1

outputs.actuators_correct_proof

outputs.rrun_gets_maj_proof

outputs.safe_OK_proof

outputs.vote_gives_maj_proof

outputs.working_agreement_proof

repl_machine.disharge_finite

repl_machine_tcc.rrun_TCC1_PROOF

repl_machine_tcc.rrun_TCC2_PROOF

repl_machine_tcc_proofs.R_TCC1_PROOF

sensor_step.main_sensor_proof

sensor_step.sensor_ind_step_proof

sensor_step.sensor_rrunto_proof

sensor_step.sensor_step_proof

sensor_step_tcc.sensor_rrunto_lemma_TCC

simple_machine.dowhen_prev_proof

simple_machine.sched_when_proof

simple_machine.unique_when_proof

simple_machine.when_sched_proof

simple_machine_tcc.dependency_TCC1_PROO

simple_machine_tcc.run_TCC1_PROOF

simple_machine_tcc.run_TCC2_PROOF

simple_machine_tcc.step_TCC1_PROOF

simple_machine_tcc.step_TCC2_PROOF

simple_machine_tcc_proofs.active_tasks_

simple_machine_tcc_proofs.actuators_TCC

simple_machine_tcc_proofs.sensors_TCC1_

simple_props.indstep_proof

Appendix C. Results of Proof-Chain Analysis

simple_props.simple_sensor_step_proof

simple_props.simple_step_lemma_proof

simple_props.stay_simple_proof

simple_props_tcc.simple_sensor_step_lemma_TCC1_PROOF

simple_props_tcc.simple_step_lemma_TCC1_PROOF

supports.Gbar_support_prf

supports.commit_Gbar_lemma_proof

supports.commit_support_proof

supports.commit_when_proof

supports.committed_proof

supports.discharge_antisymmetry

supports.discharge_dichotomy

supports.discharge_reflexive

supports.discharge_transitive

supports.found_sub_support_proof

supports.found_support_proof

supports.in_own_support_proof

supports.subset_support_proof

supports.support_backup_proof

supports_tcc_proofs.foundation_TCC1_PROOF

voted_step.main_vote_proof

voted_step.maj_proof

voted_step.rrunto_task_proof

voted_step.rstep_task_proof

voted_step.sensors_not_voted_proof

voted_step.sstep_task_proof

voted_step.vote_lemma_proof

voted_step.voted_ind_step_proof

voted_step.voted_link_proof

voted_step.voted_step_proof

voted_step_tcc.active_task_TCC1_PROOF

voted_step_tcc_proofs.rstep_task_TCC1_PROOF

voted_step_tcc_proofs.sstep_task_lemma_TCC1_PROOF

voted_step_tcc_proofs.voted_step_lemma_TCC1_PROOF

Total: 93

